Skip to main content
Log in

Hybridized discontinuous Galerkin method for convection–diffusion problems

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new hybridized discontinuous Galerkin (DG) method for the convection-diffusion problems with mixed boundary conditions. A feature of the proposed method, is that it can greatly reduce the number of globally-coupled degrees of freedom, compared with the classical DG methods. The coercivity of a convective part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H 1-norm for general convection-diffusion problems. Furthermore, we prove that the approximate solution given by our scheme is close to the solution of the purely convective problem when the viscosity coefficient is small. Several numerical results are presented to verify the validity of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

  2. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrn. 32, 199–259 (82)

    Google Scholar 

  5. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations. part I: General nonconforming meshes. IMA J. Numer. Anal. 32, 1267–1293 (2012)

    Google Scholar 

  6. Cockburn B., Cui J.: An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions. Math. Comp. 81, 1355–1368 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn B., Cui J.: Divergence-free HDG methods for the vorticity–velocity formulation of the Stokes problem. J. Sci. Comput. 52, 256–270 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn B., Dong B., Guzmán J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77, 1887–1916 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn B., Dong B., Guzmán J., Restelli M., Sacco R.: A hybridizable discontinuous Galerkin method for steady-state convection–diffusion–reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn B., Gopalakrishnan J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal 47, 1092–1125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cockburn B., Gopalakrishnan J., Lazarov R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn B., Gopalakrishnan J., Nguyen N.C., Peraire J., Sayas F.J.: Analysis of HDG methods for Stokes flow. Math. Comp. 80, 723–760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn B., Gopalakrishnan J., Sayas F.J.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cockburn B., Guzmán J., Soon S.C., Stolarski H.K.: An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47, 2686–2707 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Egger H., Schöberl J.: A hybrid mixed discontinuous Galerkin finite element method for convection–diffusion problems. IMA J. Numer. Anal. 30, 1206–1234 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. John V., Knobloch P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part I—a review. Comput. Methods Appl. Mech. Eng. 196, 2197–2215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kikuchi F., Ando Y.: A new variational functional for the finite-element method and its application to plate and shell problems. Nucl. Eng. Des. 21, 95–113 (1972)

    Article  Google Scholar 

  18. Kikuchi F., Ando Y.: Some finite element solutions for plate bending problems by simplified hybrid displacement method. Nucl. Eng. Des. 23, 155–178 (1972)

    Article  Google Scholar 

  19. Kikuchi F., Ishii K., Oikawa I.: Discontinuous Galerkin FEM of hybrid displacement type—development of polygonal elements. Theo. & Appl. Mech. Jpn. 57, 395–404 (2009)

    Google Scholar 

  20. Knabner, P., Angerman, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)

  21. Knobloch P.: On the choice of the SUPG parameter at outflow boundary layers. Adv. Comput. Math. 31, 369–389 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Labeur R.J., Wells G.N.: A Galerkin interface stabilisation method for advection–diffusion and incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 196, 4985–5000 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)

    Google Scholar 

  24. Nguyen N.C., Peraire J., Cockburn B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nguyen N.C., Peraire J., Cockburn B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oikawa, I.: Discontinuous galerkin fem of hybrid for a convetcion-diffusion problem. In: Presentation at the Annual Meeting of Japan SIAM (Meiji University, Tokyo, Japan) (2010)

  27. Oikawa, I.: Hybridized discontinuous galerkin method for a convection–diffusion problem. Presentation at the Annual Meeting of Japan SIAM (Nagoya University, Aichi, Japan) (2010)

  28. Oikawa I: Hybridized discontinuous Galerkin method with lifting operator. JSIAM Lett. 2, 99–102 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oikawa I, Kikuchi F: Discontinuous Galerkin FEM of hybrid type. JSIAM Lett. 2, 49–52 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pian, T., Wu, C.C.: Hybrid and Incompatible Finite Element Methods. Chapman & Hall (2005)

  31. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. rep., Tech. Report LA-UR-73-479 (1973)

  32. Richter G.R.: The discontinuous Galerkin method with diffusion. Math. Comp. 58, 631–643 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tong P.: New displacement hybrid finite element models for solid continua. Int. J. Num. Meth. Eng. 2, 95–113 (1970)

    Article  Google Scholar 

  34. Wells G.N.: Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J. Numer. Anal. 49, 87–109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Oikawa.

About this article

Cite this article

Oikawa, I. Hybridized discontinuous Galerkin method for convection–diffusion problems. Japan J. Indust. Appl. Math. 31, 335–354 (2014). https://doi.org/10.1007/s13160-014-0137-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-014-0137-5

Keywords

Mathematics Subject Classification

Navigation