Skip to main content
Log in

Multiscale density decorrelation by Cauchy–Navier wavelets

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a multiscale post-processing method in exploration. Based on a physically relevant mollification technique involving the Cauchy–Navier equation, we mathematically describe the extractable information within 3D density data sets. More explicitly, the developed multiscale approach extracts and visualizes geological features inherently available in signature bands of certain geological formations such as aquifers, salt domes etc. by specifying suitable wavelet bands. We compare the presented approach with already existing methods such as Newton multiscale decorrelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aki, K., Richards, P.: Quantitative Seismology, 2nd edn. University Science Books, Sausalito (2002)

    Google Scholar 

  • Blick, C.: Multiscale Potential Methods in Geothermal Research: Decorrelation Reflected Post-Processing and Locally Based Inversion. PhD thesis, Geomathematics Group, University of Kaiserslautern, Verlag Dr. Hut. (2015)

  • Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. Int. J. Geomath. 8(1), 57–83 (2017)

    Article  MathSciNet  Google Scholar 

  • Blick, C., Freeden, W., Nutz, H.: Gravimetry and exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy, Geosystems Mathematics, pp. 687–751. Birkhäuser, Cham (2018)

    Chapter  Google Scholar 

  • Eberle, S.: The elastic wave equation and the stable numerical coupling of its interior and exterior problems. ZAMM 98(7), 1261–1283 (2018)

    Article  MathSciNet  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  • Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65(5), 304–317 (2013)

    Google Scholar 

  • Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  • Freeden, W., Nashed, M.Z.: Inverse gravimetry: background material and multiscale mollifier approaches. Int. J. Geomath. 9(2), 199–264 (2018)

    Article  MathSciNet  Google Scholar 

  • Gopalakrishnan, S.: Wave Propagation in Materials and Structures. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  • Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, New York (1998)

    Book  Google Scholar 

  • Irons, T.: Marmousi model (2015). http://www.reproducibility.org/RSF/book/data/marmousi/paper_html/. Accessed 21 May 2015

  • Kupradze, V.D.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North Holland, Amsterdam (1979)

    Google Scholar 

  • Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner. Studienbücher (1989)

    Chapter  Google Scholar 

  • Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: an elastic upgrade for marmousi. Lead. Edge 25(2), 156–166 (2006)

    Article  Google Scholar 

  • Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1971)

    Book  Google Scholar 

  • Symes, W.W.: T.R.I.P. the Rice inversion project. Department of Computational and Applied Mathematics, Rice University, Houston, Texas, USA (2014). http://www.trip.caam.rice.edu/downloads/downloads.html. Accessed 12 Sep. 2016

  • Wienholtz, E., Kalf, H., Kriecherbauer, T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The first author thanks the “Federal Ministry for Economic Affairs and Energy, Berlin” and the “Project Management Jülich” for funding the project “SPE” (Funding Reference Number: 0324061, PI Prof. Dr. W. Freeden, CBM - Gesellschaft für Consulting, Business und Management mbH, Bexbach, Germany, corporate manager Prof. Dr. M. Bauer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Blick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blick, C., Eberle, S. Multiscale density decorrelation by Cauchy–Navier wavelets. Int J Geomath 10, 24 (2019). https://doi.org/10.1007/s13137-019-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-019-0134-6

Keywords

Mathematics Subject Classification

Navigation