Skip to main content
Log in

Modeling an inventory problem with random supply, inspection and machine breakdown

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

As businesses operating in the production sector often need to deal with defective products and machine breakdowns, they may experience challenges in their production planning and control processes. This study addresses random machine breakdown to derive an optimal production time for defective products under an abort/resume inventory control policy. Machine time-to-breakdown involves two scenarios: namely, the occurrence of machine breakdown during production and its occurrence after production. Total expected cost functions are derived for each scenario. The average cost is then assessed in terms of expense over time. This study explores assumptions such as the performance of the inspection both during and after production, defective products being discarded, and others being sold at discount prices, and the time-to-breakdown being exponentially distributed. Numerical examples are given to explain the model which has been developed, and the convex formation of the expected function of total cost is illustrated in a graph. Optimal values are investigated for production time and total cost based on two different values of the number of machine breakdowns per unit time. Sensitivity analyses are used to show how a number of system parameters affect the optimal solution. These analyses demonstrate that the demand rate and the number of machine breakdowns have a significant effect on the optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porteus, E.L.: Optimal lot sizing, process quality improvement and setup cost reduction. Oper. Res. 34, 137–144 (1986). https://doi.org/10.1287/opre.34.1.137

    Article  Google Scholar 

  2. Rosenblatt, M.J., Lee, H.L.: Economic production cycles with imperfect production processes. IIE Trans. 18, 48–55 (1986). https://doi.org/10.1080/07408178608975329

    Article  Google Scholar 

  3. Lee, H.L., Rosenblatt, M.J.: Simultaneous determination of production cycle and inspection schedules in a production system. Manag. Sci. 33, 1125–1136 (1987). https://doi.org/10.1287/mnsc.33.9.1125

    Article  Google Scholar 

  4. De, M., Das, B., Maiti, M.: EPL models for complementary and substitute items under imperfect production process with promotional cost and selling price dependent demands. OPSEARCH 53(2), 259–277 (2016). https://doi.org/10.1007/s12597-015-0233-6

    Article  Google Scholar 

  5. Lee, J.S., Park, K.S.: Joint Determination of production cycle and inspection intervals in a deteriorating production system. J. Oper. Res. Soc. 42, 775–783 (1991). https://doi.org/10.1057/jors.1991.148

    Article  Google Scholar 

  6. Gurnani, H., Drezner, Z., Akella, R.: Capacity planning under different inspection strategies. Eur. J. Oper. Res. 89, 302–312 (1996). https://doi.org/10.1016/0377-2217(94)00276-2

    Article  Google Scholar 

  7. Kogan, K., Raz, T.: Optimal allocation of inspection effort over a finite planning horizon. IIE Trans. 34, 515–527 (2002). https://doi.org/10.1023/A:1013969908398

    Google Scholar 

  8. Ma, W.-N., Gong, D.-C., Lin, G.C.: An optimal common production cycle time for imperfect production processes with scrap. Math. Comput. Model. 52, 724–737 (2010). https://doi.org/10.1016/j.mcm.2010.04.024

    Article  Google Scholar 

  9. Tsai, W.C., Shih, N.-H., Wang, C.-H.: The effects of inspection delay and restoration cost on the optimal inspection and production policy. OPSEARCH 55, 187–195 (2018). https://doi.org/10.1007/s12597-017-0313-x

    Article  Google Scholar 

  10. Moussawi-Haidar, L., Salameh, M., Nasr, W.: Production lot sizing with quality screening and rework. Appl. Math. Model. 40, 3242–3256 (2016). https://doi.org/10.1016/j.apm.2015.09.095

    Article  Google Scholar 

  11. Salameh, M.K., Jaber, M.Y.: Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64, 59–64 (2000). https://doi.org/10.1016/S0925-5273(99)00044-4

    Article  Google Scholar 

  12. Goyal, S.K., Cárdenas-Barrón, L.E.: Note on: economic production quantity model for items with imperfect quality—a practical approach. Int. J. Prod. Econ. 77, 85–87 (2002). https://doi.org/10.1016/S0925-5273(01)00203-1

    Article  Google Scholar 

  13. Maddah, B., Jaber, M.Y.: Economic order quantity for items with imperfect quality: revisited. Int. J. Prod. Econ. 112, 808–815 (2008). https://doi.org/10.1016/J.IJPE.2007.07.003

    Article  Google Scholar 

  14. Jaber, M.Y., Zanoni, S., Zavanella, L.E.: Economic order quantity models for imperfect items with buy and repair options. Int. J. Prod. Econ. 155, 126–131 (2014). https://doi.org/10.1016/J.IJPE.2013.10.014

    Article  Google Scholar 

  15. Öztürk, H., Eroglu, A., Lee, G.M.: An economic order quantity model for lots containing defective items with rework option. Int. J. Ind. Eng. Theory Appl. Pract. 22, 683–704 (2015)

    Google Scholar 

  16. Alamri, A.A., Harris, I., Syntetos, A.A.: Efficient inventory control for imperfect quality items. Eur. J. Oper. Res. 254, 92–104 (2016). https://doi.org/10.1016/J.EJOR.2016.03.058

    Article  Google Scholar 

  17. Taleizadeh, A.A., Khanbaglo, M.P.S., Cárdenas-Barrón, L.E.: An EOQ inventory model with partial backordering and reparation of imperfect products. Int. J. Prod. Econ. 182, 418–434 (2016). https://doi.org/10.1016/J.IJPE.2016.09.013

    Article  Google Scholar 

  18. Khan, M., Jaber, M.Y., Guiffrida, A.L., Zolfaghari, S.: A review of the extensions of a modified EOQ model for imperfect quality items. Int. J. Prod. Econ. 132, 1–12 (2011). https://doi.org/10.1016/J.IJPE.2011.03.009

    Article  Google Scholar 

  19. Iravani, S.M.R., Duenyas, I.: Integrated maintenance and production control of a deteriorating production system. IIE Trans. 34, 423–435 (2002). https://doi.org/10.1023/A:1013596731865

    Google Scholar 

  20. Giri, B.C., Dohi, T.: Exact formulation of stochastic EMQ model for an unreliable production system. J. Oper. Res. Soc. 56, 563–575 (2005). https://doi.org/10.1057/palgrave.jors.2601840

    Article  Google Scholar 

  21. Groenevelt, H., Pintelon, L., Seidmann, A.: Production lot sizing with machine breakdowns. Manag. Sci. 38, 104–123 (1992). https://doi.org/10.1287/mnsc.38.1.104

    Article  Google Scholar 

  22. Chung, K.-J.: Bounds for production lot sizing with machine breakdowns. Comput. Ind. Eng. 32, 139–144 (1997). https://doi.org/10.1016/S0360-8352(96)00207-0

    Article  Google Scholar 

  23. Kuhn, H.: A dynamic lot sizing model with exponential machine breakdowns. Eur. J. Oper. Res. 100, 514–536 (1997). https://doi.org/10.1016/S0377-2217(96)00136-1

    Article  Google Scholar 

  24. Moinzadeh, K., Aggarwal, P.: Analysis of a production/inventory system subject to random disruptions. Manag. Sci. 43, 1577–1588 (1997). https://doi.org/10.1287/mnsc.43.11.1577

    Article  Google Scholar 

  25. Abboud, N.E.: A simple approximation of the EMQ model with Poisson machine failures. Prod. Plan. Control. 8, 385–397 (1997). https://doi.org/10.1080/095372897235190

    Article  Google Scholar 

  26. Abboud, N.: A discrete-time Markov production-inventory model with machine breakdowns. Comput. Ind. Eng. 39, 95–107 (2001). https://doi.org/10.1016/S0360-8352(00)00070-X

    Article  Google Scholar 

  27. Makis, V., Fung, J.: An EMQ model with inspections and random machine failures. J. Oper. Res. Soc. 49, 66–76 (1998). https://doi.org/10.1057/palgrave.jors.2600484

    Article  Google Scholar 

  28. Posner, M.J.M., Berg, M.: Analysis of a production-inventory system with unreliable production facility. Oper. Res. Lett. 8, 339–345 (1989). https://doi.org/10.1016/0167-6377(89)90020-5

    Article  Google Scholar 

  29. Liu, B., Cao, J.: Analysis of a production–inventory system with machine breakdowns and shutdowns. Comput. Oper. Res. 26, 73–91 (1999). https://doi.org/10.1016/S0305-0548(98)00040-9

    Article  Google Scholar 

  30. Chung, K.-J.: Approximations to production lot sizing with machine breakdowns. Comput. Oper. Res. 30, 1499–1507 (2003). https://doi.org/10.1016/S0305-0548(02)00079-5

    Article  Google Scholar 

  31. Giri, B.C., Yun, W.Y.: Optimal lot sizing for an unreliable production system under partial backlogging and at most two failures in a production cycle. Int. J. Prod. Econ. 95, 229–243 (2005). https://doi.org/10.1016/J.IJPE.2004.01.004

    Article  Google Scholar 

  32. Giri, B.C., Yun, W.Y., Dohi, T.: Optimal design of unreliable production–inventory systems with variable production rate. Eur. J. Oper. Res. 162, 372–386 (2005). https://doi.org/10.1016/J.EJOR.2003.10.015

    Article  Google Scholar 

  33. Lin, G.C., Gong, D.-C.: On a production-inventory system of deteriorating items subject to random machine breakdowns with a fixed repair time. Math. Comput. Model. 43, 920–932 (2006). https://doi.org/10.1016/J.MCM.2005.12.013

    Article  Google Scholar 

  34. Chiu, S.W., Wang, S.-L., Chiu, Y.-S.P.: Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns. Eur. J. Oper. Res. 180, 664–676 (2007). https://doi.org/10.1016/J.EJOR.2006.05.005

    Article  Google Scholar 

  35. Chakraborty, T., Giri, B.C., Chaudhuri, K.S.: Production lot sizing with process deterioration and machine breakdown. Eur. J. Oper. Res. 185, 606–618 (2008). https://doi.org/10.1016/J.EJOR.2007.01.011

    Article  Google Scholar 

  36. Peter Chiu, Y.-S., Chen, K.-K., Cheng, F.-T., Wu, M.-F.: Optimization of the finite production rate model with scrap, rework and stochastic machine breakdown. Comput. Math. Appl. 59, 919–932 (2010). https://doi.org/10.1016/J.CAMWA.2009.10.001

    Article  Google Scholar 

  37. Ting, P.-S., Chung, K.-J.: On the convexity for the expected total cost per unit time of the EPQ model with scrap, rework and stochastic machine breakdown. Appl. Math. Model. 38, 2296–2301 (2014). https://doi.org/10.1016/J.APM.2013.10.047

    Article  Google Scholar 

  38. Ting, P.-S., Chung, K.-J.: Remarks on the optimization method of a manufacturing system with stochastic breakdown and rework process in supply chain management. Appl. Math. Model. 38, 2290–2295 (2014). https://doi.org/10.1016/J.APM.2013.10.031

    Article  Google Scholar 

  39. Taleizadeh, A.A.: A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering. Ann. Oper. Res. 261, 303–337 (2018). https://doi.org/10.1007/s10479-017-2563-7

    Article  Google Scholar 

  40. Li, N., Chan, F.T.S., Chung, S.H., Tai, A.H.: A stochastic production-inventory model in a two-state production system with inventory deterioration, rework process, and backordering. IEEE Trans. Syst. Man Cybern. Syst. 47, 916–926 (2017). https://doi.org/10.1109/tsmc.2016.2523802

    Article  Google Scholar 

  41. Meyer, R.R., Rothkopf, M.H., Smith, S.A.: Reliability and inventory in a production-storage system. Manag. Sci. 25, 799–807 (1979). https://doi.org/10.1287/mnsc.25.8.799

    Article  Google Scholar 

  42. Moini, A., Murthy, D.N.: Optimal lot sizing with unreliable production system. Math. Comput. Model. 31, 245–250 (2000). https://doi.org/10.1016/S0895-7177(00)00093-5

    Article  Google Scholar 

  43. Elleuch, M., Ben Bacha, H., Masmoudi, F., Maalej, A.Y.: Analysis of cellular manufacturing systems in the presence of machine breakdowns. J. Manuf. Technol. Manag. 19, 235–252 (2008). https://doi.org/10.1108/17410380810847936

    Article  Google Scholar 

  44. Chiu, S.W.: Robust planning in optimization for production system subject to random machine breakdown and failure in rework. Comput. Oper. Res. 37, 899–908 (2010). https://doi.org/10.1016/J.COR.2009.03.016

    Article  Google Scholar 

  45. Chiu, Y.-S.P., Chen, K.-K., Ting, C.-K.: Replenishment run time problem with machine breakdown and failure in rework. Expert Syst. Appl. 39, 1291–1297 (2012). https://doi.org/10.1016/J.ESWA.2011.08.005

    Article  Google Scholar 

  46. Widyadana, G.A., Wee, H.M.: Optimal deteriorating items production inventory models with random machine breakdown and stochastic repair time. Appl. Math. Model. 35, 3495–3508 (2011). https://doi.org/10.1016/j.apm.2011.01.006

    Article  Google Scholar 

  47. Wee, H.M., Widyadana, G.A.: A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule. Omega 41(6), 941–954 (2013). https://doi.org/10.1016/j.omega.2012.12.001

    Article  Google Scholar 

  48. Shi, X., Shen, H., Wu, T., Cheng, T.C.E.: Production planning and pricing policy in a make-to-stock system with uncertain demand subject to machine breakdowns. Eur. J. Oper. Res. 238, 122–129 (2014). https://doi.org/10.1016/J.EJOR.2014.03.017

    Article  Google Scholar 

  49. Taleizadeh, A.A., Cárdenas-Barrón, L.E., Mohammadi, B.: A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150, 9–27 (2014). https://doi.org/10.1016/J.IJPE.2013.11.023

    Article  Google Scholar 

  50. Abdel-Aleem, A., El-Sharief, M.A., Hassan, M.A., El-Sebaie, M.G.: Optimization of reliability based model for production inventory system. Int. J. Manag. Sci. Eng. Manag. 13, 54–64 (2017). https://doi.org/10.1080/17509653.2017.1292156

    Google Scholar 

  51. Chiu, S.W., Lin, H.-D., Song, M.-S., Chen, H.-M., Chiu, Y.-S.P.: An extended EPQ-based problem with a discontinuous delivery policy, scrap rate, and random breakdown. Sci. World J. 2015, 1–13 (2015). https://doi.org/10.1155/2015/621978

    Article  Google Scholar 

  52. Öztürk, H.: Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs. Oper Res Int J (2018). https://doi.org/10.1007/s12351-018-0439-5

    Google Scholar 

  53. Chung, K.-J.: The algorithm to locate the optimal solution for production system subject to random machine breakdown and failure in rework for supply chain management. J. Optim. Theory Appl. 158, 888–895 (2013). https://doi.org/10.1007/s10957-012-0160-0

    Article  Google Scholar 

  54. Varberg, D., Purcell, E.J., Rigdon, S.E.: Calculus with Differential Equations, 9th edn. PearsonPrentice Hall, New Jersey (2007)

    Google Scholar 

  55. Silverman, R.A.: Calculus with Analytic Geometry. Prentice-Hall, New Jersey (1985)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the Editor and two anonymous referees for their constructive comments, which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Öztürk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of the mathematical equations

The total cost per cycle in Eq. (17) includes the production setup cost, the production cost, the machine repair cost, the inspection cost during and after production, the disposal cost and the holding cost, which is given as:

$$\begin{aligned} TC_{1} \left( {T_{1} } \right) & = K + M + C\left( {PT_{1} } \right) + C_{s} \theta q\left( {PT_{1} } \right) + d_{1} \left( {\frac{{DT_{1} + Dg}}{1 - q}} \right) + d_{2} \left( {PT_{1} - \frac{{DT_{1} + Dg}}{1 - q}} \right) \\ & \quad + h\left( {\frac{{H_{1} \left( t \right)}}{2} + \frac{{\left( {H_{1} + H_{2} } \right)\left( {t_{r} } \right)}}{2} + \frac{{\left( {H_{2} + H_{3} } \right)\left( {t_{1} } \right)}}{2} + \frac{{\left( {H_{3} + H_{4} } \right)\left( {t_{2} } \right)}}{2} + \frac{{\left( {H_{5} } \right)\left( {t_{3} } \right)}}{2}} \right). \\ \end{aligned}$$
(51)

Then the parts of the seventh term of \(TC_{1} \left( {T_{1} } \right)\) become the following equations, respectively:

$$\frac{{H_{1} \left( t \right)}}{2} = \frac{{\left( {P - D} \right)t}}{2}t = \frac{{\left( {P - D} \right)t^{2} }}{2}$$
(52)
$$\frac{{\left( {H_{1} + H_{2} } \right)\left( {t_{r} } \right)}}{2} = \frac{{\left( {\left( {P - D} \right)t + \left( {P - D} \right)t - Dg} \right)g}}{2} = \left( {P - D} \right)tg - \frac{{Dg^{2} }}{2}$$
(53)
$$\frac{{\left( {H_{2} + H_{3} } \right)\left( {T_{1} - t} \right)}}{2} = \frac{{\left( {\left( {P - D} \right)t - Dg + \left( {P - D} \right)T_{1} - Dg} \right)\left( {T_{1} - t} \right)}}{2} = \frac{{\left( {P - D} \right)T_{1}^{2} }}{2} - \frac{{\left( {P - D} \right)t^{2} }}{2} - Dg\left( {T_{1} - t} \right)$$
(54)
$$\begin{aligned} \frac{{\left( {H_{3} + H_{4} } \right)\left( {t_{2} } \right)}}{2} & = \frac{{\left( {2H_{3} - Dt_{2} } \right)t_{2} }}{2} = H_{3} t_{2} - \frac{{Dt_{2}^{2} }}{2} = \left( {\left( {P - D} \right)T_{1} - Dg} \right)\left( {\frac{{PT_{1} }}{x}\left( {1 - \frac{D}{P(1 - q)}} \right) - \frac{Dg}{x(1 - q)}} \right) \\ & \quad - \frac{D}{2}\left( {\frac{{P^{2} T_{1}^{2} }}{{x^{2} }}\left( {1 - \frac{D}{P(1 - q)}} \right)^{2} - \frac{{2PT_{1} Dg}}{{x^{2} \left( {1 - q} \right)}}\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right) + \frac{{D^{2} g^{2} }}{{x^{2} \left( {1 - q} \right)^{2} }}} \right) \\ \end{aligned}$$
(55)
$$\frac{{\left( {H_{5} } \right)\left( {t_{3} } \right)}}{2} = \frac{{\left( {H_{4} - qQ} \right)\left( {H_{4} - qQ} \right)}}{2D} = \frac{{H_{4}^{2} - 2H_{4} qQ + q^{2} Q^{2} }}{2D} = \frac{1}{2D}\left( {H_{3}^{2} - 2H_{3} Dt_{2} + D^{2} t_{2}^{2} } \right) - \frac{1}{D}\left( {H_{3} - Dt_{2} } \right)qPT_{1} + \frac{{q^{2} P^{2} T_{1}^{2} }}{2D}$$
(56)

Substituting these equations into (A.1) gives the total inventory cost per cycle as

$$\begin{aligned} TC_{1} \left( {T_{1} } \right) & = K + M + CPT_{1} + C_{s} PT_{1} \left( {\theta q} \right) + d_{2} PT_{1} + \left( {d_{1} - d_{2} } \right)DT_{1} \left( {\frac{1}{1 - q}} \right) + \left( {d_{1} - d_{2} } \right)Dg\left( {\frac{1}{1 - q}} \right) \\ & \quad + \frac{{hP^{2} T_{1}^{2} }}{2D}\left( {\left( {1 - \frac{D}{P}} \right)\left( {1 - 2q} \right) + \left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2Dq}{x} + q^{2} } \right) \\ & \quad + hPgT_{1} \left( {q - \frac{D}{x}\left( {\frac{q}{1 - q}} \right)} \right) - hgPT_{1} + hPgt \\ \end{aligned}$$
(57)

Appendix 2: Derivation of the expected long-run average cost function

Recall Eq. (29) from Sect. 4:

$$E\left( {TCU\left( {T_{1} } \right)} \right) = \frac{{\begin{array}{*{20}c} {\mathop \int \nolimits_{0}^{{T_{1} }} \left( {\begin{array}{*{20}c} {K + M + \left( {CP + C_{s} P\theta E\left( q \right) + d_{2} P + \left( {d_{1} - d_{2} } \right)DE\left( {1/1 - q} \right)} \right)T_{1} + \left( {d_{1} - d_{2} } \right)DgE\left( {1/1 - q} \right)} \\ { + \frac{{hP^{2} T_{1}^{2} }}{2D}\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right) + hPgT_{1} \left( {E\left( q \right) - \frac{D}{x}E\left( {q/1 - q} \right)} \right) - hgPT_{1} + hPgt} \\ \end{array} } \right)f\left( t \right){\text{d}}t} \\ { + \mathop \int \nolimits_{{T_{1} }}^{\infty } \left( {\begin{array}{*{20}c} {K + \left( {CP + C_{s} P\theta E\left( q \right) + d_{2} P + \left( {d_{1} - d_{2} } \right)DE\left( {1/1 - q} \right)} \right)T_{1} } \\ { + \frac{{hP^{2} T_{1}^{2} }}{2D}\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right)} \\ \end{array} } \right)f\left( t \right){\text{d}}t} \\ \end{array} }}{{\frac{{\left( {1 - E\left( q \right)} \right)PT_{1} }}{D}}}$$
(58)

Let

$$\delta_{1} = CP + C_{s} P\theta E\left( q \right) + d_{2} P + \left( {d_{1} - d_{2} } \right)DE\left( {1/1 - q} \right),$$
(59)

and

$$\delta_{2} = \frac{{hP^{2} }}{2D}\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right).$$
(60)

Then (B.1.) becomes:

$$\begin{aligned} E\left( {TCU\left( {T_{1} } \right)} \right) & = \frac{{K + \delta_{1} T_{1} + \delta_{2} T_{1}^{2} + \mathop \int \nolimits_{0}^{{T_{1} }} \left( {M + \left( {d_{1} - d_{2} } \right)DgE\left( {1/1 - q} \right) + hPgT_{1} \left( {E\left( q \right) - \frac{D}{x}E\left( {q/1 - q} \right)} \right) - hgPT_{1} + hPgt} \right)f\left( t \right){\text{d}}t}}{{\frac{{\left( {1 - E\left( q \right)} \right)PT_{1} }}{D}}} \\ & \therefore f\left( t \right) = \beta e^{ - \beta t} . \\ \end{aligned}$$
(61)
$$\mathop \int \limits_{0}^{{T_{1} }} f\left( t \right){\text{d}}t = F\left( {T_{1} } \right) = 1 - e^{{ - \beta T_{1} }} ,$$
(62)
$$\mathop \int \limits_{0}^{{T_{1} }} t f\left( t \right){\text{d}}t = F\left( {T_{1} } \right) = - T_{1} e^{{ - \beta T_{1} }} - \frac{{e^{{ - \beta T_{1} }} }}{\beta } + \frac{1}{\beta }.$$
(63)

Substituting (B.5) and (B.6) into (B.4), one obtains:

$$E\left( {TCU\left( {T_{1} } \right)} \right) = \frac{D}{{\left( {1 - E\left( q \right)} \right)}}\left( {\frac{K}{{PT_{1} }} + \frac{{\delta_{1} }}{P} + \frac{{\delta_{2} T_{1} }}{P} + \left( {\frac{{M + \left( {d_{1} - d_{2} } \right)DgE\left( {1/1 - q} \right)}}{{PT_{1} }}} \right)\left( {1 - e^{{ - \beta T_{1} }} } \right) - hg + hg\left( {E\left( q \right) - \frac{D}{x}E\left( {q/1 - q} \right)} \right)\left( {1 - e^{{ - \beta T_{1} }} } \right) + \frac{hg}{{\beta T_{1} }}\left( {1 - e^{{ - \beta T_{1} }} } \right)} \right)$$
(64)

or

$$\begin{aligned} E\left( {TCU\left( {T_{1} } \right)} \right) & = \frac{D}{{\left( {1 - E\left( q \right)} \right)}}\left( {C + C_{s} \theta E\left( q \right) + d_{2} + \frac{{D\left( {d_{1} - d_{2} } \right)}}{P}E\left( {1/1 - q} \right) - hg} \right) \\ & \quad + \frac{{hPT_{1} }}{{2\left( {1 - E\left( q \right)} \right)}}\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right) \\ & \quad + \frac{D}{{\left( {1 - E\left( q \right)} \right)}}\left( {\frac{K}{{PT_{1} }} + hg\left( {E\left( q \right) - \frac{D}{x}E\left( {q/1 - q} \right)} \right)\left( {1 - e^{{ - \beta T_{1} }} } \right) + \left( {\frac{{M + \left( {d_{1} - d_{2} } \right)DgE\left( {1/1 - q} \right)}}{P} + \frac{hg}{\beta }} \right)\frac{{\left( {1 - e^{{ - \beta T_{1} }} } \right)}}{{T_{1} }}} \right) \\ \end{aligned}$$
(65)

Let

$$\delta = hP\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right).$$
(66)

By substituting (B.9) into (B.8) one obtains the following:

$$\begin{aligned} E\left( {TCU\left( {T_{1} } \right)} \right) & = \frac{D}{{\left( {1 - E\left( q \right)} \right)}}\left( {C + C_{s} \theta E\left( q \right) + d_{2} + \frac{{D\left( {d_{1} - d_{2} } \right)}}{P}E\left( {1/1 - q} \right) - hg} \right) + \frac{{\delta T_{1} }}{{2\left( {1 - E\left( q \right)} \right)}} \\ & \quad + \frac{D}{{\left( {1 - E\left( q \right)} \right)}}\left( {\frac{K}{{PT_{1} }} + hg\left( {E\left( q \right) - \frac{D}{x}E\left( {q/1 - q} \right)} \right)\left( {1 - e^{{ - \beta T_{1} }} } \right) + \left( {\frac{{M + \left( {d_{1} - d_{2} } \right)DgE\left( {1/1 - q} \right)}}{P} + \frac{hg}{\beta }} \right)\frac{{\left( {1 - e^{{ - \beta T_{1} }} } \right)}}{{T_{1} }}} \right) \\ \end{aligned}$$
(67)

where

$$\delta = hP\left( {\left( {1 - \frac{D}{P}} \right)E\left( {1 - 2q} \right) + E\left( {1 - \frac{D}{{P\left( {1 - q} \right)}}} \right)\frac{2DE\left( q \right)}{x} + E\left( {q^{2} } \right)} \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, H. Modeling an inventory problem with random supply, inspection and machine breakdown. OPSEARCH 56, 497–527 (2019). https://doi.org/10.1007/s12597-019-00374-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00374-3

Keywords

Navigation