Skip to main content
Log in

Existence and Stability of \(L^{p}\) Solutions of the Steady State Magnetohydrodynamic Equations with Rough External Forces

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, following the work of Bjorland et al. (Commun Partial Differ Equ 36:216–246, 2011) we prove the existence, the asymptotic behavior and stability of solutions to the steady state 3D magnetohydrodynamic equations in \(L^{p}\) and \(L^{p,\infty }\), \(3/2<{p}\le {\infty }\) with rough external forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Benvenutti, M., Ferreira, L.: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Integral Equ. 29, 977–1000 (2016)

    MathSciNet  Google Scholar 

  3. Bjorland, C., Schonbek, M.: Existence and stability of steady state solutions with finite energy for the Navier–Stokes equation in the whole space. Nonlinearity 22, 1615–1637 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bjorland, C., Brandolese, L., Iftimie, D., Schonbek, M.: \(L^{p}\) solutions of the steady state Navier–Stokes equations with rough external forces. Commun. Partial Differ. Equ. 36, 216–246 (2011)

    Article  Google Scholar 

  5. Brandolese, L., Vigneron, F.: New asymptotic profiles of non-stationary solutions of the Navier–Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cannone, M.: Ondelettes, Paraproduits et Navier–Stokes equations. Diderot Editeur, Paris (1995)

    Google Scholar 

  7. Cannone, M., Karch, G.: Smooth or singular solutions to the Navier–Stokes system. J. Differ. Equ. 197, 247–274 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cannone, M., Karch, G.: About the regularized Navier–Stokes equations. J. Math. Fluid Mech. 7, 1–28 (2005)

    Article  MathSciNet  Google Scholar 

  9. Doering, C., Gibbon, J.: Applied Analysis of the Navier–Stokes Equations, Cambridge Texts in Applied Mathematics, vol. 12. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  10. Duvaut, G., Lions, J.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46(4), 241–279 (1972)

    Article  Google Scholar 

  11. Ferreira, L., Villamizar-Roa, E.: Exponentially-stable steady flow and asymptotic behavior for the magnetohydrodynamic equations. Commun. Math. Sci. 9(2), 499–516 (2011)

    Article  MathSciNet  Google Scholar 

  12. Finn, R.: On steady state solutions of the Navier–Stokes partial differential equations. Arch. Ration. Mech. Anal. 105, 381–396 (1959)

    Article  MathSciNet  Google Scholar 

  13. Finn, R.: On steady state solutions of the Navier–Stokes equations III. Acta. Math. 3, 197–244 (1961)

    Article  MathSciNet  Google Scholar 

  14. Finn, R.: On the exterior stationary problem for the Navier–Stokes equations and associated perturbation problem. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  Google Scholar 

  15. Gallagher, I., Iftimie, D., Planchon, F.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier 53, 1387–1424 (2003)

    Article  MathSciNet  Google Scholar 

  16. Heywood, J.: On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37, 48–60 (1970)

    Article  MathSciNet  Google Scholar 

  17. Ilin, K., Trakhinin, Y., Vladimirov, V.: The stability of steady magnetohydrodynamic flows with current vortex sheets. Phys. Plasmas 10, 2649–2658 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equations in \(R^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  19. Kozono, H., Yamazaki, M.: The stability of small stationary solutions in Morrey spaces of the Navier–Stokes equation. Indiana Univ. Math. J. 44, 1307–1336 (1995)

    Article  MathSciNet  Google Scholar 

  20. Kozono, H., Yamazaki, M.: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)

    Article  MathSciNet  Google Scholar 

  21. Kufner, A., John, O., Fucik, S.: Function Spaces. Noordhoff International Publishing, Leyden and Academia, Praha (1977)

    Google Scholar 

  22. Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59, 173–182 (2010)

    Article  MathSciNet  Google Scholar 

  23. Lemarié-Rieusset, P.G.: Recent developements in the Navier–Stokes problem. Chapman and Hall, CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  24. Miyakawa, T., Schonbek, M.: On optimal decay rates for weak solutions to the Navier–Stokes equations. Math. Bohem. 126, 443–455 (2001)

    Article  MathSciNet  Google Scholar 

  25. Meyer, Y.: Wavelets, Paraproducts and Navier–Stokes Equations, Current Developments in Mathematics, vol. 1996. International Press, Cambridge (1999)

    Google Scholar 

  26. Raiter, P.D., Saraykar, R.V.: Existence of steady state solutions with finite energy for the magnetohydrodynamic equations in the whole space \(R^{3}\). IOSR J. Math. 10, 16–32 (2014)

    Article  Google Scholar 

  27. Sanchez, Palencia E.: Quelques résultants d’existence et d’unicité pour des ecoulements magnétohydrodynamiques non stationnaires. J. Mech. 8, 509–541 (1969)

    Google Scholar 

  28. Secchi, P.: On the stationary and non-stationary Navier–Stokes equations in \(R^{n}\). Ann. Mat. Pura Ed Apl. 153, 293–306 (1988)

    Article  Google Scholar 

  29. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  30. Tan, Z., Tong, L.: Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Am. Inst. Math. Sci. 37, 3435–3465 (2017)

    MathSciNet  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhauser, Basel (1983)

    Book  Google Scholar 

  32. Uddhao, S.V., Saraykar, R.V.: Stability of solutions of the magnetohydrodynamic equations and convergence to steady state. Asian J. Math. Comput. Res. 25(3), 140–156 (2018)

    Google Scholar 

  33. Uddhao, S.V., Saraykar, R.V.: Holly type stability of set of solutions of three dimensional stationary incompressible magnetohydrodynamic equations. Differ. Equ. Dyn. Syst. 29(1), 35–58 (2021)

    Article  MathSciNet  Google Scholar 

  34. Yamazaki, M.: The Navier–Stokes equations in the weak \(L^{n}\)-space with time dependent external force. Math. Ann. 317, 635–675 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editor and the referees for their valuable remarks and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Uddhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddhao, S.V., Raiter, P.D. & Saraykar, R.V. Existence and Stability of \(L^{p}\) Solutions of the Steady State Magnetohydrodynamic Equations with Rough External Forces. Differ Equ Dyn Syst 32, 437–465 (2024). https://doi.org/10.1007/s12591-021-00578-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-021-00578-4

Keywords

Mathematics Subject Classification

Navigation