Skip to main content

Advertisement

Log in

Modelling and Analysis of the Intrinsic Dynamics of Cholera

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A simple mathematical model for cholera is presented using a system of ordinary differential equations. Comprehensive analysis of the important mathematical features of the model is carried out. The disease-free and endemic equilibria are obtained and their local stability investigated. We use the centre manifold theory to show the stability of the endemic equilibrium and suitable Lyapunov function for its global stability. Qualitative analysis of the model including positivity and boundedness of solutions are also presented. The cholera model is numerically analysed using published data to explore the effects of the recovery rate, rate of exposure to contaminated water and contribution of infected individuals to the population of Vibrio cholerae in the aquatic environment on the cumulative number of cholera infected individuals. The results demonstrate that proper management of the diseases will reduce the burden of cholera in endemic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R.M., May R.M: Infectious diseases of humans. Oxford Univesity Press, London/ New York (1991)

    Google Scholar 

  2. Birkhoff G., Rota G.C.: Ordinary differential equations. Ginn, Boston (1982)

    Google Scholar 

  3. Brauer, F., Castillo-Chavez, C.: Mathematical models in population biology and epidemiology. In: Texts in applied mathematics series, vol. 40, Springer-Verlag, New York, (2001)

  4. Capasso V., Paveri-Fontana S.L.: A mathematical model for the 1973 cholera epidemic in the european mediterranean region. Revue dépidémoligié et de santé Publiqué 27, 121–132 (1979)

    Google Scholar 

  5. Carr J.: Applications centre manifold theory. Springer-Verlag, New York (1981)

    MATH  Google Scholar 

  6. Castillo-Chavez, C., Feng, Z., Huang, W.: On the computation of \({{\mathcal R}_{0}}\) and its role on global stability. math.la.asu.edu/chavez/2002/JB276.pdf. (2002)

  7. Castillo-Chavez C., Song B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Engineer. 1(2), 361–404 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Codeço C.T.: Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir. BMJ Infect. Dis 1, 1 (2001)

    Article  Google Scholar 

  9. Cowell R.R., Huq A.: Environmenta reservoir of Vibro Cholerae, the causative agent of cholera. Ann. N. Y. Acad. Soc. 740, 44–54 (1994)

    Article  Google Scholar 

  10. Diekmann O., Heesterbeek J.A.P., Metz J.A.P.: On the definition and computation of the basic reproduction ratio \({{\mathcal R}_{0}}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol 28(4), 365–382 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Faruque, S.M., Nair, G.B. (eds): Vibrio cholerae: Genomics and molecular biology. Caister Academic Press, Wymondham (2008)

    Google Scholar 

  12. Freedman H.I., So J.W.H.: Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartley D.M., Morris J.G. Jr, Smith D.L.: Hyperinfectivity: a critical element in the ability of V. cholerae to Cause Epidemics?. PLoS Med. 3(1), e7 (2006)

    Article  Google Scholar 

  14. Koelle K., Rodo X., Pascual M., Yunus M., Mostafa G.: Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005)

    Article  Google Scholar 

  15. Koelle K., Pascual M.: Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am. Naturalist 163, 901–913 (2004)

    Article  Google Scholar 

  16. Longini I.M. Jr, Nizam A., Ali M., Yunus M., Shenvi N., Clemens J.D.: Controlling endemic cholera with oral vacines. PLoS Medicine 4, e336 (2007)

    Article  Google Scholar 

  17. Mukandavire Z., Mutasa F.K., Hove-Musekwa S.D., Dube S., Tchuenche J.M.: Mathematical analysis of a cholera model with carriers and assessing the effects of treatment. In: Wilson, L.B. (eds) Mathematical Biology Research Trends., pp. 1–37. Caister Academic Press, Nova Science Publishers (2008)

  18. Mukandavire Z, Garira W.: HIV/AIDS model for assessing the effects of prophylactic sterilizing vaccines, condoms and treatment with amelioration. J. Biol. Syst. 14(3), 323–355 (2006)

    Article  MATH  Google Scholar 

  19. Naresh R., Tripathi A., Omar S.: Modelling the spread of AIDS epidemic with vertical transmission. Appl. Math. Comp. 178(2), 262–278 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Naresh R., Tripathi A., Sharma D.: Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives. Math. Comp. Modell. 49, 880–892 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sepulveda J., Gomez-Dantes H., Bronfman M.: Cholera in the Americas: an overview. Infection 20(5), 243–248 (1992)

    Article  Google Scholar 

  22. Tripathi A., Naresh R., Sharma D.: The effect of screening of unaware infectives on the spread of HIV infection. Appl. Math. Comp. 184(2), 1053–1068 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. WHO: Cholera 2005. Weekly epidemiological record 81, 297–308 (2006)

    Google Scholar 

  25. WHO.: Cholera: prevention and control. (2007). http://www.who.int/topics/cholera/control/en/index.html. (Retrieved on 2009-05-11)

  26. WHO.: Daily cholera update and alerts. 17 May (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Mukandavire.

Additional information

This article was written when the first author was at the National University of Science and Technology, Zimbabwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukandavire, Z., Tripathi, A., Chiyaka, C. et al. Modelling and Analysis of the Intrinsic Dynamics of Cholera. Differ Equ Dyn Syst 19, 253–265 (2011). https://doi.org/10.1007/s12591-011-0087-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-011-0087-1

Keywords

Navigation