Skip to main content
Log in

Multivalued perturbations of a saddle dynamics

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We consider multivalued perturbations both of the discrete and of the continuous time hyperbolic dynamical system of the type

$$ x_{k + 1} \in Xx_k + f\left( {x_k } \right) + G\left( {x_k } \right), \dot x \in Ax + f\left( x \right) + G\left( x \right) $$

, where G is a parameterized multivalued map, i.e., \( G\left( x \right) = g\left( {x,\varepsilon \mathcal{B}_\mathcal{X} } \right) \) with \( \mathcal{B}_\mathcal{X} \) denoting the closed unit ball of a Banach space X and ε > 0. Under the assumptions that f and g are Lipschitz, with small Lipschitz constant, we prove that the saddle-type dynamics persists under the multivalued perturbation. More precisely, we construct analogues of the stable and unstable manifolds, which are typical of a single-valued hyperbolic dynamics and remain graphs of Lipschitz maps in the multivalued setting. Under more stringent assumptions on g, we prove some further topological properties. Also the maximal bounded invariant set is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold L. and Kloeden P. E., Discretization of a random dynamical system near a hyperbolic point, Math. Nachr., 181, 43–72, (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin J. P. and Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin, (1984)

    MATH  Google Scholar 

  3. Aubin J. P. and Frankowska H., Set-Valued Analysis, Birkhäuser, Basel, (1990)

    MATH  Google Scholar 

  4. Aulbach B., The fundamental existence theorem on invariant fiber bundles, J. Differ. Equations Appl., 3, 501–537, (1998)

    MATH  MathSciNet  Google Scholar 

  5. Aulbach B. and Garay B. M., Discretization of semilinear differential equations with an exponential dichotomy, Comput. Math. Appl., 28, 23–35, (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aulbach B., Pötzsche Ch. and Siegmund S., A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14, 519–547, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aulbach B. and Wanner T., The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spacs, Nonlin. Anal. 40, 91–104, (2000)

    Article  MathSciNet  Google Scholar 

  8. Aulbach B. and Wanner T., Integral manifolds for Carathéodory-type differential equations in Banach spacs, in: Aulbach B., Colonius F. (Eds.), Six Lectures on Dynamical Systems, World Scientific, Singapore, 45–119, (1996)

    Google Scholar 

  9. Aulbach B. and Wanner T., Topological simplification of nonautonomous difference equations, J. Difference Equations Applications, 12, 283–296, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aulbach B. and Wanner T., Invariant foliations and decoupling of non-autonomous difference equations, J. Difference Equations Applications, 9, 459–472, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aulbach B. and Wanner T., Invariant foliations for Carathéodory-type differential equations in Banach spacs, in: Martynyuk A. A. (Ed.), Advances in Stability Theory at the End of the 20th Century - Stability and Control: Theory, Methods and Applications, Taylor and Francis, London, 13, 1–14, (2003)

    Google Scholar 

  12. Battelli F. and Fečkan M., Global center manifolds in singular systems, Nonlinear Differential Equations Applications, 3, 19–34, (1996)

    Article  Google Scholar 

  13. Battelli F. and Lazzari C., Exponential dichotomies, heteroclinic orbits, and Melnikov functions, J. Differential Equations, 86, 342–366, (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borsuk K., Theory of Retracts, PWN, Warszawa, (1967)

    MATH  Google Scholar 

  15. Chaperon M., Invariant manifold theory via generating maps, C.R. Acad. Sci. Paris, Ser. I, 346, 1175–1180, (2008)

    MATH  MathSciNet  Google Scholar 

  16. Clarke F. H., Ledyaev Yu. S., Stern R. J. and Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer, Berlin, (1998)

    MATH  Google Scholar 

  17. Colombo G., Fečkan M. and Garay B. M., Inflated deterministic chaos and Smale’s horseshoe, (submitted)

  18. Colombo G. and Nguyen T. Khai, Quantitative isoperimetric inequalities for a class of nonconvex sets, Calc. Var. PDE’s, 37, 141–166, (2010)

    Article  MATH  Google Scholar 

  19. Debussche A. and Temam R., Some new generalizations of inertial manifolds, Discrete Contin. Dynam. Systems, 2, 543–558, (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Duan J., Lu K. and Schmalfuss B., Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16, 949–972, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fečkan M., Transversal bounded solutions for difference equations, J. Difference Equations Applications, 8, 33–51, (2002)

    Article  MATH  Google Scholar 

  22. Federer H., Curvature measures, Trans. Amer. Math. Soc., 93, 418–491, (1959)

    MATH  MathSciNet  Google Scholar 

  23. Garay B. M. and Kloeden P. E., Discretization near compact invariant sets, Random Comput. Dynam., 5, 93–123, (1997)

    MATH  MathSciNet  Google Scholar 

  24. Górniewicz L., Topological approach to differential inclusions, in Topological methods in differential equations and inclusions, Kluwer, Dordrecht, 129–190, (1995)

    Google Scholar 

  25. Gruendler J., Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Differential Equations, 122, 1–26, (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grüne L., Asymptotic Behaviour of Dynamical and Control Systems under Perturbation and Discretization, Springer, Berlin, (2002)

    Google Scholar 

  27. Hilger S., Smoothness of invariant manifolds, J. Funct. Anal., 106, 95–129, (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Himmelberg C. J., Measurable relations, Fund. Math., 87, 53–72, (1975)

    MATH  MathSciNet  Google Scholar 

  29. Irwin M. C., Smooth Dynamical Systems, Academic Press, New York, (1980)

    MATH  Google Scholar 

  30. Ivanov G. E. and Balashov M. V., Lipschitz parameterizations of multivalued mappings with weakly convex values, Izv. Ross. Akad. Nauk Ser. Mat., 71, 47–68, (2007) (in Russian; translation in, Izv. Math., 71, 1123–1143, (2007))

    MathSciNet  Google Scholar 

  31. Kirchraber U. and Palmer K., Geometry in the Neighbourhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman, London, (1991)

    Google Scholar 

  32. Kloeden P. E. and Kozyakin V. S., The inflation of attractors and their discretization: the autonomous case, Nonlinear Anal., 40, 333–343, (2000)

    Article  MathSciNet  Google Scholar 

  33. Łojasiewicz Jr S., Parametrizations of convex sets, in Progress in approximation theory, Academic, Boston, 629–648, (1991)

    Google Scholar 

  34. McGehee R. and Sander E., A new proof of the stable manifold theorem, Z. angew Math. Phys. (ZAMP), 47, 497–513, (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ornelas A., Parametrization of Carathéodory multifunctions, Rend. Sem. Mat. Univ. Padova, 83, 33–44, (1990)

    MATH  MathSciNet  Google Scholar 

  36. Palmer K. J., Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55, 225–256, (1984)

    Article  MATH  MathSciNet  Google Scholar 

  37. Palmer K. J., Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, 1, 265–306, (1988)

    MathSciNet  Google Scholar 

  38. Palmer K. J., Shadowing in Dynamical Systems, Theory and Applications, Kluwer Academic Publishers, Dordrecht, (2000)

    MATH  Google Scholar 

  39. Pilyugin S. and Rieger J., Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case, Topol. Methods Nonlin. Anal., 32, 151–164, (2008)

    MATH  MathSciNet  Google Scholar 

  40. Pilyugin S. and Rieger J., A general approach to hyperbolicity for set-valued maps, J. Math. Sci., (in print)

  41. Robinson J. C., Inertial manifolds with and without delay, Discrete Contin. Dynam. Systems, 5, 813–824, (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sander E., Hyperbolic sets for noninvertible maps and relations, Discr. Cont. Dyn. Sys., 5, 339–357, (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Shub M., Global Stability of Dynamical Systems, Springer, Berlin, (1987)

    MATH  Google Scholar 

  44. Tolstonogov A. A., Differential Inclusions in a Banach Space, Kluwer, Dordrecht, (2000)

    MATH  Google Scholar 

  45. Yost D., There can be no Lipschitz version of Michael’s selection theorem, Proceedings of the analysis conference, Singapore (1986), North-Holland, Amsterdam, 295–299, (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Colombo.

Additional information

Dedicated to the memory of Bernd Aulbach.

Partially supported by grants VEGA-MS 1/2001/05 and OTKA 81403.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, G., Fečkan, M. & Garay, B.M. Multivalued perturbations of a saddle dynamics. Differ Equ Dyn Syst 18, 29–56 (2010). https://doi.org/10.1007/s12591-010-0008-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-010-0008-8

Keywords

Mathematics Subject Classification (2000)

Navigation