Skip to main content
Log in

Development and analysis of novel mission scenarios based on Atmosphere-Breathing Electric Propulsion (ABEP)

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Operating satellites in Very Low Earth Orbit (VLEO) benefit the already expanding New Space industry in applications including Earth Observation and beyond. However, long-term operations at such low altitudes require propulsion systems to compensate for the large aerodynamic drag forces. When using conventional propulsion systems, the amount of storable propellant limits the maximum mission lifetime. The latter can be avoided by employing Atmosphere-Breathing Electric Propulsion (ABEP) system, which collects the residual atmospheric particles and uses them as propellant for an electric thruster. Thus, the requirement of on-board propellant storage can ideally be nullified. At the Institute of Space Systems (IRS) of the University of Stuttgart, an intake, and a RF Helicon-based Plasma Thruster (IPT) for ABEP system are developed within the Horizons 2020 funded DISCOVERER project. To assess possible future use cases, this paper proposes and analyzes several novel ABEP-based mission scenarios. Beginning with technology demonstration mission in VLEO, more complex mission scenarios are derived and discussed in detail. These include, amongst others, orbit maintenance around Mars as well as refuelling and space tug missions. The results show that the ABEP system is not only able to compensate drag for orbit maintenance but also capable of performing orbital maneuvers and collect propellant for applications such as Space Tug and Refuelling. Thus, showing a multitude of different future mission applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

VLEO:

Very Low Earth Orbit

VLMO:

Very Low Mars Orbit

ABEP:

Atmosphere-Breathing Electric Propulsion

EO:

Earth observation

IPT:

RF Helicon-based Plasma Thruster

FDC:

Full drag compensation

References

  1. Wang, J.: Behind the Hype on ‘New Space, 2020. Available: https://international.thenewslens.com/article/140976 [Online] (Accessed Oct 2, 2020).

  2. Crisp, N., Roberts, P., Livadiotti, S., Oiko, V., Edmondson, S., Haigh, S., Huyton, C., et al.: The benefits of very low earth orbit for earth observation missions. Prog Aerosp Sci 117, 100619 (2020)

    Article  Google Scholar 

  3. Crisp, N.: Very Low Earth Orbits—reducing orbital altitude for lower cost Earth observation and communications satellites. Available: https://nhcrisp.medium.com/vleo-ea5c5248e857 [Online] (Accessed Dec 10, 2021).

  4. Romano, F., Chan, Y.-A., Herdrich, G., Traub, C., Fasoulas, S., Roberts, P., Crisp, N., et al.: Design, set-up, and first ignition of the RF helicon-based plasma thruster. [Online], Space Propulsion 2020+1, Virtual, 00247 (2021)

  5. Mahmoud, W., Elfiky, D., Robaa, S., Elnawawy, M., Yousef, S.: Effect of atomic oxygen on LEO CubeSat. Int. J. Aeronaut. Space Sci 22(3), 726–733 (2021)

    Article  Google Scholar 

  6. Romano, F., Chan, Y.-A., Herdrich, G., Traub, C., Fasoulas, S., Roberts, P., Smith, K., et al.: RF helicon-based inductive plasma thruster (IPT) design for an atmosphere-breathing electric propulsion system (ABEP). Acta Astronaut. 176, 476–483 (2020)

    Article  Google Scholar 

  7. Di Cara, D., Del Amo, J. G., Santovincenzo, A., Dominguez, B. C., Arcioni, M., Caldwell, A., Roma, I.: RAM electric propulsion for low earth orbit operation: an ESA study. In: 30th International Electric Propulsion Conference, Florence, Italy. IEPC-2007-162 (2007).

  8. Ferrato, E., Giannetti, V., Piragino, A., Andrenucci, M., Andreussi, T., and Paissoni, C.A.: Development roadmap of SITAEL’s RAM-EP system. In: 36th International Electric Propulsion Conference, vol. 9. University of Vienna, Austria. IEPC-2019-886 (2019).

  9. Erofeev, A., Nikiforov, A., Popov, G., Suvorov, M., Syrin, S., Khartov, S.: Air-breathing ramjet electric propulsion for controlling low-orbit spacecraft motion to compensate for aerodynamic drag. Sol. Syst. Res. 51(7), 639–645 (2017)

    Article  Google Scholar 

  10. Shabshelowitz, A.: Study of RF plasma technology applied to air-breathing electric propulsion, Ph.D. thesis, University of Michigan (2013).

  11. Hohman, K.: Atmospheric breathing electric thruster for planetary exploration. Busek Co. Inc. 11, 01760–11023 (2012)

    Google Scholar 

  12. Nishiyama, K.: Air breathing ion engine concept. In: 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany. (2003). https://doi.org/10.2514/6.IAC-03-S.4.02

  13. GOCE (Gravity field and steady-state Ocean Circulation Explorer). Available: https://earth.esa.int/web/eoportal/satellite-missions/g/goce [Online] (Accessed Oct 2, 2020).

  14. Garcia-Almiñana, D., Rodriguez-Donaire, S., Suerda, M., Garcia-Berenguer, M., Gil Mora, P., Pascual Canyelles, C.M., Puigserver Rosselló, M.: D5.5—Canvas business models for the most promising system concepts. DISCOVERER, Deliverable D5.5, 737183, v5.2, (2021).

  15. Romanazzo, M., Steiger, C., Emanuelli, P.P., Floberghagen, R., Fehringer, M.: Low orbit operations of ESA’s gravity mission GOCE. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany (2013).

  16. Gini F: GOCE precise non-gravitational force modelling for POD applications. Ph.D. dissertation in Astronautical and Satellite Sciences, Università degli Studi di Padova, Italy (2014).

  17. Romano, F., Espinosa-Orozco, J., Pfeiffer, M., Herdrich, G., Crisp, N., Roberts, P., Holmes, B.E.A., et al.: Intake design for an atmosphere-breathing electric propulsion system (ABEP). Acta Astronaut. 187, 225–235 (2021)

    Article  Google Scholar 

  18. Takahashi, K.: Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Rev. Modern Plasma Phys. 3, 1–61 (2019)

    Article  Google Scholar 

  19. ESA, “GOCE completes its mission” [Online]. Available: http://www.esa.int/Applications [Accessed April 18, 2020].

  20. Boldini, P.C.: Optimum design of the intake for an atmosphere-breathing electric propulsion system. Bachelor thesis, IRS-16-S-024, Institute of Space Systems, University of Stuttgart, Germany (2016).

  21. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: RLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res.: Space Phys. 107(A12), SIA15 (2002)

    Google Scholar 

  22. Millour, E., Forget, F., Lewis, S.R.: Mars climate database v5.3 user manual. ESTEC contract 4000117944/16/NL/LF/as “Maintenance and Update of the Mars Climate Database” (2017).

  23. Schönherr, T., Komurasaki, K., Romano, F., Massuti-Ballester, B., Herdrich, G.: Analysis of atmosphere-breathing electric propulsion. IEEE Trans. Plasma Sci. 43(1), 287–294 (2015)

    Article  Google Scholar 

  24. Marcuccio, S.: Class lecture, topic: “Spacecraft Thermal Control.” In: Satellite instrumentation. University of Pisa, Italy (2012)

    Google Scholar 

  25. NASA, “Estimating the temperature of a flat plate in low earth orbit”, 2000. Available: https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/estimating_the_temperature.htm [Online] (Accessed Apr 11, 2020)

  26. Lyngvi, A., Rando, N., Gerlach, L., and Peacock, A.: The solar orbiter thermal design. In: 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, pp. C2–6 (2005).

  27. Romano, F.: System Analysis and Test Bed for an Air-Breathing Electric Propulsion System. Master thesis, Institute of Space Systems, University of Stuttgart, Germany (2014).

  28. Sutton, G.P., Biblarz, O.: Rocket propulsion elements. John Wiley & Sons, New York (2016)

    Google Scholar 

  29. SolAero Technologies Corp, ZTJ-triple-junction solar cells. Available: https://solaerotech.com/products/space-solar-cells-coverglass-interconnected-cells-cic/ [Online] (Accessed Apr 18, 2020)

  30. Prieto, D., Graziano, B., Roberts, P.: Spacecraft drag modelling. Prog. Aerosp. Sci. 64, 56–65 (2014)

    Article  Google Scholar 

  31. Schönherr, T.: Air-breathing electric propulsion. In: Propulsion and energy systems. Department of Aeronautics and Astronautics, The University of Tokyo, Japan (2015)

    Google Scholar 

  32. Mengali, G., Quarta, A.: Fondamenti di meccanica del volo spaziale, Nuova edizioni. Pisa University Press srl, Pisa, Italy (2006)

    Google Scholar 

  33. NASA, Dawn Ion Propulsion system. Available: https://solarsystem.nasa.gov/missions/dawn/technology/ion-propulsion/ [Online] (Accessed: May 16, 2020)

  34. Edwards, C., Wallace, N., Tato, C. and Van Put, P.: The T5 ion propulsion assembly for drag compensation on GOCE. In: second international GOCE user workshop GOCE, The Geoid and Oceanography (2004).

  35. Hohman, K.: Atmospheric breathing electric thruster for planetary exploration. Final Report, Grant No. NNX11AR29G (2012).

  36. Singh, L.A., Walker, M.L.: A review of research in low earth orbit propellant collection. Prog. Aerosp. Sci. 75, 15–25 (2015)

    Article  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737183. This reflects only the author’s view, and the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vaidya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, S., Traub, C., Romano, F. et al. Development and analysis of novel mission scenarios based on Atmosphere-Breathing Electric Propulsion (ABEP). CEAS Space J 14, 689–706 (2022). https://doi.org/10.1007/s12567-022-00436-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00436-1

Keywords

Navigation