Introduction

Tao et al. [1, Definition 4, p. 613] proposed the operational law (1) and the operational law (2) respectively to evaluate the sum and the multiplication of two IFVs \( {\alpha}_1=\left\langle {\mu}_{\alpha_1},{\nu}_{\alpha_1}\right\rangle \) and \( {\alpha}_2=\left\langle {\mu}_{\alpha_2},{\nu}_{\alpha_2}\right\rangle \).

$$ {\alpha}_1{\oplus}_c{\alpha}_2=\left\langle 1-{\phi}^{-1}\left[\phi \left(1-{\mu}_{\alpha_1}\right)+\phi \left(1-{\mu}_{\alpha_2}\right)\right],{\phi}^{-1}\left[\phi \left({\nu}_{\alpha_1}\right)+\phi \left({\nu}_{\alpha_2}\right)\right]\right\rangle $$
(1)
$$ {\alpha}_1{\otimes}_c{\alpha}_2=\left\langle {\phi}^{-1}\left[\phi \left({\mu}_{\alpha_1}\right)+\phi \left({\mu}_{\alpha_2}\right)\right],1-{\phi}^{-1}\left[\phi \left(1-{\nu}_{\alpha_1}\right)+\phi \left(1-{\nu}_{\alpha_2}\right)\right]\right\rangle $$
(2)

Hence, Tao et al. [1] proposed the operational law (3) to evaluate the sum of “n” IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n and the operational law (4) to evaluate the multiplication of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n.

$$ {\oplus_c}_{i=1}^n{\alpha}_i=\left\langle 1-{\phi}^{-1}\left({\sum}_{i=1}^n\phi \left(1-{\mu}_{\alpha_i}\right)\right),\kern0.75em \right.\left.{\phi}^{-1}\left({\sum}_{i=1}^n\phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle $$
(3)
$$ {\otimes_c}_{i=1}^n{\alpha}_i=\left\langle {\phi}^{-1}\left({\sum}_{i=1}^n\phi \left({\mu}_{\alpha_i}\right)\right),\left.1-{\phi}^{-1}\left({\sum}_{i=1}^n\phi \left(1-{\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
(4)

Also, using the operational law (3) and the operational law (4), Tao et al. [1, Theorem 7, p. 616] proposed the IFCAAO (5) to aggregate n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n by considering “wi” as the normalized weight associated with the intuitionistic fuzzy value (IFV) “\( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \).”

$$ {\oplus_c}_{i=1}^n\left({w}_i{\otimes}_c{\alpha}_i\right)=\left\langle 1-{\phi}^{-1}\left({\sum}_{i=1}^n{w}_i\times \phi \left(1-{\mu}_{\alpha_i}\right)\right),\right.\left.{\phi}^{-1}\left({\sum}_{i=1}^n{w}_i\times \phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle $$
(5)

where ϕ is a strictly decreasing function such that ϕ(1) = 0, ϕ(0) =  ∞ , ϕ−1(0) = 1, and ϕ−1(∞) = 0 [1, Proof of Theorem 2, p. 613].

The aim of this commentary is to make the researchers aware that

  1. (i)

    The operational law (3), proposed by Tao et al. [1, Definition 4, p. 613] to evaluate the sum of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈1, 0〉 for any i.

  2. (ii)

    The operational law (4), proposed by Tao et al. [1, Definition 4, p. 613] to evaluate the multiplication n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈0, 1〉 for any i.

  3. (iii)

    The IFCAAO (5), proposed by Tao et al. [1, Theorem 7, p. 616] to aggregate n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈1, 0〉 for any i.

Limitation of Tao et al.’s Operational Laws

In this section, it is shown that

  1. (i)

    The operational law (3), proposed by Tao et al. [1] to evaluate the sum of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈1, 0〉 for any i.

  2. (ii)

    The operational law (4), proposed by Tao et al. [1] to evaluate the multiplication of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈0, 1〉 for any i.

Limitation of Tao et al.’s Operational Law to Evaluate the Sum of Finite Number of IFVs

In this section, it is shown that if one of the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will be 〈1, 0〉. Then, the sum of all the n IFVs will also be 〈1, 0〉 i.e., if \( {\alpha}_p=\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle =\left\langle 1,0\right\rangle \) then the sum of the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will be independent from the remaining “(n − 1)” IFV values \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, p − 1, p + 1, …n. Hence, the operational law (3), proposed by Tao et al. [1] to evaluate the sum of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈1, 0〉 for any i.

The operational law (6) represents an alternative form of the operational law (3).

$$ {\oplus_c}_{i=1}^n{\alpha}_i=\left\langle 1-{\phi}^{-1}\left(\phi \left(1-{\mu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\mu}_{\alpha_i}\right)\right),\left.{\phi}^{-1}\left(\phi \left({\nu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
(6)

Let \( {\alpha}_p=\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle =\left\langle 1,0\right\rangle \), i.e., \( {\mu}_{\alpha_p}=1 \) and \( {\nu}_{\alpha_p}=0 \). Then, using the operational law (6),

$$ {\oplus_c}_{i=1}^n{\alpha}_i=\left\langle 1-{\phi}^{-1}\left(\phi \left(1-1\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\mu}_{\alpha_i}\right)\right),\left.{\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
$$ =\left\langle 1-{\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\mu}_{\alpha_i}\right)\right),\left.{\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$

Using the existing relation ϕ(0) =  ∞ [1, Proof of Theorem 2, p. 613],

$$ {\oplus_c}_{i=1}^n{\alpha}_i=\left\langle 1-{\phi}^{-1}\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\mu}_{\alpha_i}\right)\right),\left.{\phi}^{-1}\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
$$ =\left\langle 1-{\phi}^{-1}\left(\infty \right),{\phi}^{-1}\left(\infty \right)\right\rangle $$

Using the existing relation ϕ−1(∞) = 0 [1, Proof of Theorem 2, p. 613],

$$ {\oplus_c}_{i=1}^n{\alpha}_i=\left\langle 1-0,0\right\rangle $$
$$ =\left\langle 1,0\right\rangle . $$

Limitation of Tao et al.’s Operational Law to Evaluate the Multiplication of IFVs

In this section, it is shown that if one of the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will be 〈0, 1〉, then the multiplication of all the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will also be 〈0, 1〉, i.e., if αp = 〈0, 1〉, then the multiplication of the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will be independent from the remaining (n − 1) IFV values \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, p − 1, p + 1, …, n. Hence, the operational law (4), proposed by Tao et al. [1] to evaluate the multiplication of n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈0, 1〉 for any i.

The operational law (7) represents an alternative form of the operational law (4).

$$ {\otimes_c}_{i=1}^n{\alpha}_i=\left\langle {\phi}^{-1}\left(\phi \left({\mu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\mu}_{\alpha_i}\right)\right),\left.1-{\phi}^{-1}\left(\phi \left(1-{\nu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
(7)

Let \( {\alpha}_p=\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle =\left\langle 0,1\right\rangle \) i.e., \( {\mu}_{\alpha_p}=0 \) and \( {\nu}_{\alpha_p}=1 \). Then, using the operational law (7),

$$ {\otimes_c}_{i=1}^n{\alpha}_i=\left\langle {\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\mu}_{\alpha_i}\right)\right),\left.1-{\phi}^{-1}\left(\phi \left(1-1\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
$$ =\left\langle {\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\mu}_{\alpha_i}\right)\right),\left.1-{\phi}^{-1}\left(\phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$

Using the existing relation ϕ(0) = ∞ [1, Proof of Theorem 2, p. 613],

$$ {\otimes_c}_{i=1}^n{\alpha}_i=\left\langle {\phi}^{-1}\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left({\mu}_{\alpha_i}\right)\right),\left.1-{\phi}^{-1}\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\phi \left(1-{\nu}_{\alpha_i}\right)\right)\right\rangle \right. $$
$$ =\left\langle {\phi}^{-1}\left(\infty \right),1-{\phi}^{-1}\left(\infty \right)\right\rangle $$

Using the existing relation ϕ−1(∞) = 0 [1, Proof of Theorem 2, p. 613],

$$ {\otimes_c}_{i=1}^n{\alpha}_i=\left\langle 0,1-0\right\rangle $$
$$ =\left\langle 0,1\right\rangle . $$

Limitation of Tao et al.’s IFCAAO

In this section, it is shown that if one of the n IFVs \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n will be 〈1, 0〉, then the aggregated IFV, obtained by Tao et al.’s IFCAAO, will also be 〈1, 0〉, i.e., if αp = 〈1, 0〉, then the aggregated IFV will be independent from the remaining (n − 1) IFV values \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, p − 1, p + 1, …, n. Hence, the IFCAAO (5), proposed by Tao et al. [1] to aggregate \( {\alpha}_i=\left\langle {\mu}_{\alpha_i},{\nu}_{\alpha_i}\right\rangle \), i = 1, 2, …, n, can be used only if αi ≠ 〈1, 0〉 for any i.

The IFCAAO (8) represents an alternative form of the IFCAAO (5).

$$ {\oplus_c}_{i=1}^n\left({w}_i{\otimes}_c{\alpha}_i\right)=\left\langle 1-{\phi}^{-1}\left({w}_p\times \phi \left(1-{\mu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left(1-{\mu}_{\alpha_i}\right)\right)\right),\left.{\phi}^{-1}\left({w}_p\times \phi \left({\nu}_{\alpha_p}\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left({\nu}_{\alpha_i}\right)\right)\right)\right\rangle \right. $$
(8)

Let \( {\alpha}_p=\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle =\left\langle 1,0\right\rangle \), i.e., \( {\mu}_{\alpha_p}=1 \) and \( {\nu}_{\alpha_p}=0 \). Then, using the IFCAAO (8),

$$ {\oplus_c}_{i=1}^n\left({w}_i{\otimes}_c{\alpha}_i\right)=\left\langle 1-{\phi}^{-1}\left({w}_p\times \phi \left(1-1\right)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n{w}_i\phi \left(1-{\mu}_{\alpha_i}\right)\right)\right.,{\phi}^{-1}\left.\left({w}_p\times \phi (0)+\kern.5em {\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n{w}_i\times \phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle $$
$$ =\left\langle 1-{\phi}^{-1}\left({w}_p\times \phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n{w}_i\phi \left(1-{\mu}_{\alpha_i}\right)\right)\right.,{\phi}^{-1}\left.\left({w}_p\times \phi (0)+{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n{w}_i\times \kern0.5em \phi \left({\nu}_{\alpha_i}\right)\right)\right\rangle $$

Using the existing relation ϕ(0) = �� [1, Proof of Theorem 2, p. 613],

$$ {\oplus_c}_{i=1}^n\left({w}_i{\otimes}_c{\alpha}_i\right)=\left\langle 1-{\phi}^{-1}\left({w}_p\times \infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left(1-{\mu}_{\alpha_i}\right)\right)\right)\right.,{\phi}^{-1}\left.\left({w}_p\times \infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left({\nu}_{\alpha_i}\right)\right)\right)\right\rangle $$
$$ =\left\langle 1-{\phi}^{-1}\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left(1-{\mu}_{\alpha_i}\right)\right)\right)\right.,{\phi}^{-1}\left.\left(\infty +{\sum}_{\begin{array}{c}i=1\\ {}i\ne p\end{array}}^n\left({w}_i\times \phi \left({\nu}_{\alpha_i}\right)\right)\right)\right\rangle $$
$$ =\left\langle 1-{\phi}^{-1}\left(\infty \right)\right.,{\phi}^{-1}\left.\left(\infty \right)\right\rangle $$

Using the existing relation ϕ−1(∞) = 0 [1, Proof of Theorem 2, p. 613],

$$ {\oplus_c}_{i=1}^n\left({w}_i{\otimes}_c{\alpha}_i\right)=\left\langle 1-0,0\right\rangle $$
$$ =\left\langle 1,0\right\rangle . $$

Impact of the Limitation of Tao et al.’s IFCAAO on the Ranking of the Alternatives of an Existing Multiple-Attribute Decision-Making Problem

Tao et al. [1] considered a multiple-attribute decision-making problem of the ranking of four projectors to illustrate their proposed IFCAAO.

In this section, firstly, the multiple-attribute decision-making problem, considered by the Tao et al. [1], is discussed in a brief manner. Then, the impact of the limitation of Tao et al.’s IFCAAO [1] on the ranking of alternatives of multiple-attribute decision-making problem, considered by Tao et al. [1], is discussed.

A Brief Review of Tao et al.’s Multiple-Attribute Decision-Making Problem

Tao et al. [1] used the following method to rank the four projectors by considering that the (i, j)th IFV of the intuitionistic fuzzy decision matrix \( \overset{\sim }{D}={\left({\alpha}_{ij}\right)}_{4\times 5}=\left(\begin{array}{c}\left\langle \mathrm{0.4,0.3}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.6,0.1}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.5,0.4}\right\rangle \\ {}\left\langle \mathrm{0.6,0.3}\right\rangle \end{array}\end{array}\end{array}\kern0.5em \begin{array}{c}\left\langle \mathrm{0.5,0.2}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.4,0.3}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.6,0.1}\right\rangle \\ {}\left\langle \mathrm{0.4,0.5}\right\rangle \end{array}\end{array}\end{array}\kern0.5em \begin{array}{c}\left\langle \mathrm{0.7,0.2}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.3,0.5}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.6,0.2}\right\rangle \\ {}\left\langle \mathrm{0.5,0.3}\right\rangle \end{array}\end{array}\end{array}\kern0.5em \begin{array}{c}\left\langle \mathrm{0.4,0.6}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.6,0.2}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.7,0.1}\right\rangle \\ {}\left\langle \mathrm{0.8,0.2}\right\rangle \end{array}\end{array}\end{array}\kern0.5em \begin{array}{c}\left\langle \mathrm{0.6,0.2}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.5,0.3}\right\rangle \\ {}\begin{array}{c}\left\langle \mathrm{0.3,0.6}\right\rangle \\ {}\left\langle \mathrm{0.5,0.2}\right\rangle \end{array}\end{array}\end{array}\right) \) represents the rating value of the ith projector (i = 1, 2, 3, 4) over the jth benefit attribute (j = 1, 2, 3, 4, 5), provided by a decision-maker.

Step 1: Tao et al. [1] applied an existing method to evaluate the normalized weights w1, w2, w3, w4, and w5 corresponding to the first, second, third, fourth, and fifth attributes respectively.

Step 2: Tao et al. [1] applied the IFCAAO to evaluate

  1. (i)

    The IFV α1 = w1c〈0.4,0.3〉⊕cw2c〈0.5,0.2〉⊕cw3c〈0.7,0.2〉 ⊕cw4c〈0.4,0.6〉⊕cw5c〈0.6,0.2〉 corresponding to the first projector.

  2. (ii)

    The IFV α2 = w1c〈0.6,0.1〉⊕cw2c〈0.4,0.3〉⊕cw3c〈0.3,0.5〉 ⊕cw4c〈0.6,0.2〉⊕cw5c〈0.5,0.3〉 corresponding to the second projector.

  3. (iii)

    The IFV α3 = w1c〈0.5,0.4〉⊕cw2c〈0.6,0.1〉⊕cw3c〈0.6,0.2〉 ⊕cw4c〈0.7,0.1〉⊕cw5c〈0.3,0.6〉 corresponding to the third projector.

  4. (iv)

    The IFV α4 = w1c〈0.6,0.3〉⊕cw2c〈0.4,0.5〉⊕cw3c〈0.5,0.3〉 ⊕cw4c〈0.8,0.2〉⊕cw5c〈0.5,0.2〉 corresponding to the fourth projector.

Step 3: Tao et al. [1] used the following method to conclude that that the pth alternative is better than the qth alternative or vice versa.

Step (3a): Check Score (αp) > Score (αq) or Score (αp) < Score (αq) or Score (αp) = Score (αq),

where,

\( \mathrm{Score}\ \left({\alpha}_p\right)=\mathrm{Score}\ \left(\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle \right)={\mu}_{\alpha_p}-{\nu}_{\alpha_p} \) and \( \mathrm{Score}\ \left({\alpha}_q\right)=\mathrm{Score}\ \left(\left\langle {\mu}_{\alpha_q},{\nu}_{\alpha_q}\right\rangle \right)={\mu}_{\alpha_q}-{\nu}_{\alpha_q} \).

Case (i): If Score (αp) > Score (αq), then the pth alternative is better than the qth alternative.

Case (ii): If Score (αp) < Score (αq), then the qth alternative is better than the pth alternative.

Case (iii): If Score (αp) = Score (αq), then go to step (3b).

Step (3b): Check Accuracy (αp) > Accuracy (αq) or Accuracy (αp) < Accuracy (αq), where,

\( \mathrm{Accuracy}\ \left({\alpha}_p\right)=\mathrm{Accuracy}\ \left(\left\langle {\mu}_{\alpha_p},{\nu}_{\alpha_p}\right\rangle \right)={\mu}_{\alpha_p}+{\nu}_{\alpha_p} \) and \( \mathrm{Accuracy}\ \left({\alpha}_q\right)=\mathrm{Accuracy}\ \left(\left\langle {\mu}_{\alpha_q},{\nu}_{\alpha_q}\right\rangle \right)={\mu}_{\alpha_q}+{\nu}_{\alpha_q}. \)

Case (i): If Accuracy (αp) > Accuracy (αq), then the pth alternative is better than the qth alternative.

Case (ii): If Accuracy (αp) < Accuracy (αq), then the qth alternative is better than the pth alternative.

Case (iii): If Accuracy (αp) = Accuracy (αq), then the pth alternative is equivalent to the qth alternative.

Impact of the Limitation of Tao et al.’s IFCAAO

It is obvious from “A Brief Review of Tao Et al.’s Multiple-Attribute Decision-Making Problem” that in step 2, the IFCAAO (5) has been used to obtain

  1. (i)

    The IFV α1 = w1c〈0.4,0.3〉⊕cw2c〈0.5,0.2〉⊕cw3c〈0.7,0.2〉

    cw4c〈0.4,0.6〉⊕cw5c〈0.6,0.2〉 corresponding to the first projector.

    If the IFV α11 = 〈0.4,0.3〉 or the IFV α12 = 〈0.5,0.2〉 or the IFV α13 = 〈0.7,0.2〉 or the IFV α14 = 〈0.4,0.6〉 or the IFV α15 = 〈0.6,0.2〉 is replaced by the IFV 〈1, 0〉. Then, according to “Limitation of Tao et al.’s IFCAAO,” the obtained IFV α1 will be 〈1, 0〉.

    Furthermore, as 〈1, 0〉 is the only IFV for which Score will be 1 and the Score of any IFV can never be more than 1, in such a situation, the first projector will be one of the best projectors, i.e., if α1j = 〈1, 0〉 for any j, then the result “the first projector is one of the best projectors” is independent from all the remaining 19 IFVs of the intuitionistic fuzzy decision matrix \( \overset{\sim }{D} \).

  2. (ii)

    The IFV α2 = w1c〈0.6,0.1〉⊕cw2c〈0.4,0.3〉⊕cw3c〈0.3,0.5〉⊕c

    w4c〈0.6,0.2〉⊕cw5c〈0.5,0.3〉, corresponding to the second projector.

    If the IFV α21 = 〈0.6,0.1〉 or the IFV α22 = 〈0.4,0.3〉 or the IFV α23 = 〈0.3,0.5〉 or the IFV α24 = 〈0.6,0.2〉 or the IFV α25 = 〈0.5,0.3〉 is replaced by the IFV 〈1, 0〉, then, according to “Limitation of Tao et al.’s IFCAAO,” the obtained IFV α2 will be 〈1, 0〉.

    Furthermore, as discussed in (i), in such a situation, the second projector will be one of the best projectors, i.e., if α2j = 〈1, 0〉 for any j, then the result “the second projector is one of the best projectors” is independent from all the remaining 19 IFVs of the intuitionistic fuzzy decision matrix \( \overset{\sim }{D} \).

  3. (iii)

    The IFV α3 = w1c〈0.5,0.4〉⊕cw2c〈0.6,0.1〉⊕cw3c〈0.6,0.2〉 ⊕cw4c〈0.7,0.1〉⊕cw5c〈0.3,0.6〉 corresponding to the third projector.

    If the IFV α31 = 〈0.5,0.4〉 or the IFV α32 = 〈0.6,0.1〉 or the IFV α33 = 〈0.6,0.2〉 or the IFV α34 = 〈0.7,0.1〉 or the IFV α35 = 〈0.3,0.6〉 is replaced by the IFV 〈1, 0〉, then, according to “Limitation of Tao et al.’s IFCAAO,” the obtained IFV α3 will be 〈1, 0〉.

    Furthermore, as discussed in (i), in such a situation, the third projector will be one of the best projectors, i.e., if α3j = 〈1, 0〉 for any j, then the result “the third projector is one of the best projectors” is independent from all the remaining 19 IFVs of the intuitionistic fuzzy decision matrix \( \overset{\sim }{D} \).

  4. (iv)

    The IFV α4 = w1c〈0.6,0.3〉⊕cw2c〈0.4,0.5〉⊕cw3c〈0.5,0.3〉

    cw4c〈0.8,0.2〉⊕cw5c〈0.5,0.2〉, corresponding to the fourth projector.

    If the IFV α41 = 〈0.6,0.3〉 or the IFV α42 = 〈0.4,0.5〉 or the IFV α43 = 〈0.5,0.3〉 or the IFV α44 = 〈0.8,0.2〉 or the IFV α45 = 〈0.5,0.2〉 is replaced by the IFV 〈1, 0〉, then, according to “Limitation of Tao et al.’s IFCAAO,” the obtained IFV α4 will be 〈1, 0〉.

    Furthermore, as discussed in (i), in such a situation, the fourth projector will be one of the best projectors, i.e., if α4j = 〈1, 0〉 for any j, then the result “the fourth projector is one of the best projectors” is independent from all the remaining 19 IFVs of the intuitionistic fuzzy decision matrix \( \overset{\sim }{D} \).

Conclusion

It is shown that the operational law (3) to evaluate sum of finite number of IFVs and the IFCAAO (5) to aggregate finite number of IFVs, proposed by Tao et al. [1], can be used only if αi ≠ 〈1, 0〉 for any i. Also, it is shown that the operational law (4) to evaluate the multiplication of finite number of IFVs, proposed by Tao et al. [1], can be used only if αi ≠ 〈0, 1〉 for any i.