Skip to main content
Log in

Operando investigation of nanocrystal-based device energy landscape: Seeing the current pathway

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to their unique optical properties, colloidal nanocrystals (NCs) have transitioned from a solution processable luminescent liquid to an established building block for optoelectronics. As devices get more advanced, a higher degree of refinement is also required for the probe used to investigate their electronic structure. For long, device optimization has relied on the measurement of physical properties of the pristine material, assuming that they would be maintained after device integration. However, such an assumption neglects the realistic dielectric environment and possibly applied electric fields to drive the device. Hence, tools compatible with operando investigation of the electronic structure are required. Here, we review and present additional results relative to the operando investigation of infrared NCs using photoemission microscopy. This technique combines the advantages of photoemission to unveil band alignment with a sub-µm spatial resolution that is used to correlate energy shift to the device geometry. This method gives direct access to parameters such as diode built-in potential, transistor lever arm, or even the vectorial distribution of the electric field that are otherwise only attainable through indirect methods involving modelling. We provide indications and precautions to be used in the design of devices to permit the operando analysis via photoemission techniques. It is, therefore, a very promising tool for the optimization of NC-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erdem, T.; Demir, H. V. Colloidal nanocrystals for quality lighting and displays: Milestones and recent developments. Nanophotonics 2016, 5, 74–95.

    Article  Google Scholar 

  2. Beveratos, A.; Kühn, S.; Brouri, R.; Gacoin, T.; Poizat, J. P.; Grangier, P. Room temperature stable single-photon source. Eur. Phys. J. D 2002, 18, 191–196.

    Article  CAS  Google Scholar 

  3. De Vittorio, M.; Pisanello, F.; Martiradonna, L.; Qualtieri, A.; Stomeo, T.; Bramati, A.; Cingolani, R. Recent advances on single photon sources based on single colloidal nanocrystals. Opto-Electron. Rev. 2010, 18, 1–9.

    Article  Google Scholar 

  4. Brokmann, X.; Messin, G.; Desbiolles, P.; Giacobino, E.; Dahan, M.; Hermier, J. P. Colloidal CdSe/ZnS quantum dots as single-photon sources. New J. Phys. 2004, 6, 99.

    Article  Google Scholar 

  5. Pejović, V.; Georgitzikis, E.; Lee, J.; Lieberman, I.; Cheyns, D.; Heremans, P.; Malinowski, P. E. Infrared colloidal quantum dot image sensors. IEEE Trans. Electron Devices 2022, 69, 2840–2850.

    Article  Google Scholar 

  6. Gréboval, C.; Darson, D.; Parahyba, V.; Alchaar, R.; Abadie, C.; Noguier, V.; Ferré, S.; Izquierdo, E.; Khalili, A.; Prado, Y. et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. Nanoscale 2022, 14, 9359–9368.

    Article  PubMed  Google Scholar 

  7. Soreni-Harari, M.; Yaacobi-Gross, N.; Steiner, D.; Aharoni, A.; Banin, U.; Millo, O.; Tessler, N. Tuning energetic levels in nanocrystal quantum dots through surface manipulations. Nano Lett. 2008, 8, 678–684.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

    Article  CAS  Google Scholar 

  9. Zhao, H. F.; Zhu, Y. C.; Ye, H. Y.; He, Y.; Li, H.; Sun, Y. F.; Yang, F.; Wang, R. M. Atomic- scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv. Mater. 2023, 35, 2206911.

    Article  CAS  Google Scholar 

  10. Zhou, L.; Sun, Y. H.; Wu, Y. S.; Zhu, Y. C.; Xu, Y. Y.; Jia, J. F.; Wang, F.; Wang, R. M. Controlled growth of Pd nanocrystals by interface interaction on monolayer MoS2: An atom-resolved in situ study. Nano Lett. 2023, 23, 11360–11367.

    Article  CAS  PubMed  Google Scholar 

  11. Ye, H. Y.; Zhang, Z. H.; Wang, R. M. Nucleation and growth of nanocrystals investigated by in situ transmission electron microscopy. Small 2023, 19, 2303872.

    Article  CAS  Google Scholar 

  12. Carroll, G. M.; Tsui, E. Y.; Brozek, C. K.; Gamelin, D. R. Spectroelectrochemical measurement of surface electrostatic contributions to colloidal CdSe nanocrystal redox potentials. Chem. Mater. 2016, 28, 7912–7918.

    Article  CAS  Google Scholar 

  13. Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 2016, 1, 665–671.

    Article  CAS  Google Scholar 

  14. Chen, M. L.; Guyot-Sionnest, P. Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 2017, 11, 4165–4173.

    Article  CAS  PubMed  Google Scholar 

  15. Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

    Article  CAS  PubMed  Google Scholar 

  16. Jagtap, A.; Martinez, B.; Goubet, N.; Chu, A.; Livache, C.; Gréboval, C.; Ramade, J.; Amelot, D.; Trousset, P.; Triboulin, A. et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode. ACS Photonics 2018, 5, 4569–4576.

    Article  CAS  Google Scholar 

  17. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarma, D. D.; Santra, P. K.; Mukherjee, S.; Nag, A. X-ray photoelectron spectroscopy: A unique tool to determine the internal heterostructure of nanoparticles. Chem. Mater. 2013, 25, 1222–1232.

    Article  CAS  Google Scholar 

  19. Livache, C.; Izquierdo, E.; Martinez, B.; Dufour, M.; Pierucci, D.; Keuleyan, S.; Cruguel, H.; Becerra, L.; Fave, J. L.; Aubin, H. et al. Charge dynamics and optolectronic properties in HgTe colloidal quantum Wells. Nano Lett. 2017, 17, 4067–4074.

    Article  CAS  PubMed  Google Scholar 

  20. Gréboval, C.; Rastogi, P.; Qu, J. L.; Chu, A.; Ramade, J.; Khalili, A.; Dabard, C.; Dang, T. H.; Cruguel, H.; Ouerghi, A. et al. Time-resolved photoemission to unveil electronic coupling between absorbing and transport layers in a quantum dot-based solar cell. J. Phys. Chem. C 2020, 124, 23400–23409.

    Article  Google Scholar 

  21. Rastogi, P.; Izquierdo, E.; Gréboval, C.; Cavallo, M.; Chu, A.; Dang, T. H.; Khalili, A.; Abadie, C.; Alchaar, R.; Pierini, S. et al. Extended short-wave photodiode based on CdSe/HgTe/Ag2Te stack with high internal efficiency. J. Phys. Chem. C 2022, 126, 13720–13728.

    Article  CAS  Google Scholar 

  22. Amelot, D.; Rastogi, P.; Martinez, B.; Gréboval, C.; Livache, C.; Bresciani, F. A.; Qu, J. L.; Chu, A.; Goyal, M.; Chee, S. S. et al. Revealing the band structure of FAPI quantum dot film and its interfaces with electron and hole transport layer using time resolved photoemission. J. Phys. Chem. C 2020, 124, 3873–3880.

    Article  CAS  Google Scholar 

  23. Schneider, C. M.; Wiemann, C.; Patt, M.; Feyer, V.; Plucinski, L.; Krug, I. P.; Escher, M.; Weber, N.; Merkel, M.; Renault, O. et al. Expanding the view into complex material systems: From microARPES to nanoscale HAXPES. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 330–339.

    Article  CAS  Google Scholar 

  24. Locatelli, A.; Bauer, E. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 2008, 20, 093002.

    Google Scholar 

  25. Renault, O. High-resolution XPS spectromicroscopy. Surf. Interface Anal. 2010, 42, 816–825.

    Article  CAS  Google Scholar 

  26. Menteş, T. O.; Zamborlini, G.; Sala, A.; Locatelli, A. Cathode lens spectromicroscopy: Methodology and applications. Beilstein J. Nanotechnol. 2014, 5, 1873–1886.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Locatelli, A.; Aballe, L.; Mentes, T. O.; Kiskinova, M.; Bauer, E. Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications. Surf. Interface Anal. 2006, 38, 1554–1557.

    Article  CAS  Google Scholar 

  28. Barrett, N.; Gottlob, D. M.; Mathieu, C.; Lubin, C.; Passicousset, J.; Renault, O.; Martinez, E. Operando X-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions. Rev. Sci. Instrum. 2016, 87, 053703.

    Article  CAS  PubMed  Google Scholar 

  29. Wiemann, C.; Patt, M.; Krug, I. P.; Weber, N. B.; Escher, M.; Merkel, M.; Schneider, C. M. A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra. E-J. Surf. Sci. Nanotechnol. 2011, 9, 395–399.

    Article  Google Scholar 

  30. Patt, M.; Wiemann, C.; Weber, N.; Escher, M.; Gloskovskii, A.; Drube, W.; Merkel, M.; Schneider, C. M. Bulk sensitive hard X-ray photoemission electron microscopy. Rev. Sci. Instrum. 2014, 85, 113704.

    Article  CAS  PubMed  Google Scholar 

  31. Escher, M.; Winkler, K.; Renault, O.; Barrett, N. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 303–316

    Article  Google Scholar 

  32. di Mario, L.; Turchini, S.; Zamborlini, G.; Feyer, V.; Tian, L.; Schneider, C. M.; Rubini, S.; Martelli, F. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy. Appl. Surf. Sci. 2016, 386, 72–77.

    Article  CAS  Google Scholar 

  33. Aballe, L.; Foerster, M.; Pellegrin, E.; Nicolas, J.; Ferrer, S. The ALBA spectroscopic LEEM-PEEM experimental station: Layout and performance. J. Synchrotron Rad. 2015, 22, 745–752.

    Article  CAS  Google Scholar 

  34. Cavallo, M.; Bossavit, E.; Zhang, H. C.; Dabard, C.; Dang, T. H.; Khalili, A.; Abadie, C.; Alchaar, R.; Mastrippolito, D.; Prado, Y. et al. Mapping the energy landscape from a nanocrystal-based field effect transistor under operation using nanobeam photoemission spectroscopy. Nano Lett. 2023, 23, 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  35. Cavallo, M.; Bossavit, E.; Matzen, S.; Maroutian, T.; Alchaar, R.; Dang, T. H.; Khalili, A.; Dabard, C.; Zhang, H. C.; Prado, Y. et al. Coupling ferroelectric to colloidal nanocrystals as a generic strategy to engineer the carrier density landscape. Adv. Funct. Mater. 2023, 33, 2300846.

    Article  CAS  Google Scholar 

  36. Cavallo, M.; Ram, A.; Pandey, S.; Maroutian, T.; Bossavit, E.; Ledos, N.; Khalili, A.; Zhang, H. C.; Prado, Y.; Nguyen, D. L. et al. Using wafer scale ferroelectric domains of LiNbO3 to form permanent planar p-n junction in narrow band gap nanocrystals. Appl. Phys. Lett. 2023, 123, 253505.

    Article  CAS  Google Scholar 

  37. Cavallo, M.; Alchaar, R.; Bossavit, E.; Zhang, H. C.; Dang, T. H.; Khalili, A.; Prado, Y.; Silly, M. G.; Utterback, J. K.; Ithurria, S. et al. Inside a nanocrystal-based photodiode using photoemission microscopy. Nanoscale 2023, 15, 9440–9448.

    Article  CAS  PubMed  Google Scholar 

  38. Amati, M.; Barinov, A.; Feyer, V.; Gregoratti, L.; Al-Hada, M.; Locatelli, A.; Mentes, T. O.; Sezen, H.; Schneider, C. M.; Kiskinova, M. Photoelectron microscopy at elettra: Recent advances and perspectives. J. Electron Spectrosc. Relat. Phenom. 2018, 224, 59–67.

    Article  CAS  Google Scholar 

  39. Zeller, P.; Amati, M.; Sezen, H.; Scardamaglia, M.; Struzzi, C.; Bittencourt, C.; Lantz, G.; Hajlaoui, M.; Papalazarou, E.; Marino, M. et al. Scanning photoelectron spectro-microscopy: A modern tool for the study of materials at the nanoscale. Phys. Status Solidi (a) 2018, 215, 1800308.

    Article  Google Scholar 

  40. Wu, C. L.; Lee, H. M.; Kuo, C. T.; Chen, C. H.; Gwo, S. Absence of fermi-level pinning at cleaved nonpolar InN surfaces. Phys. Rev. Lett. 2008, 101, 106803.

    Article  PubMed  Google Scholar 

  41. Avila, J.; Asensio, M. C. First nanoARPES user facility available at SOLEIL: An innovative and powerful tool for studying advanced materials. Synchrotron Radiat. News 2014, 27, 24–30.

    Article  Google Scholar 

  42. Iwasawa, H.; Dudin, P.; Inui, K.; Masui, T.; Kim, T. K.; Cacho, C.; Hoesch, M. Buried double CuO chains in YBa2Cu4O8 uncovered by nano-ARPES. Phys. Rev. B 2019, 99, 140510.

    Article  CAS  Google Scholar 

  43. Kastl, C.; Koch, R. J.; Chen, C. T.; Eichhorn, J.; Ulstrup, S.; Bostwick, A.; Jozwiak, C.; Kuykendall, T. R.; Borys, N. J.; Toma, F. M. et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy. ACS Nano 2019, 13, 1284–1291.

    CAS  PubMed  Google Scholar 

  44. Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle- resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of elettra. J. Synchrotron Rad. 2010, 17, 445–450.

    Article  CAS  Google Scholar 

  45. Koch, R. J.; Jozwiak, C.; Bostwick, A.; Stripe, B.; Cordier, M.; Hussain, Z.; Yun, W. B.; Rotenberg, E. Nano focusing of soft X-rays by a new capillary mirror optic. Synchrotron Radiat. News 2018, 31, 50–52.

    Article  Google Scholar 

  46. Gogoi, D.; Wiemann, C.; Dittmann, R.; Schneider, C. M. Resistive switching systems: A spectromicroscopy approach. Phys. Status Solidi (A), in press, https://doi.org/10.1002/pssa.202300500.

  47. Avila, J.; Lorcy, S.; Dudin, P. ANTARES: Space-resolved electronic structure. J. Electron Spectrosc. Relat. Phenom. 2023, 266, 147362.

    Article  CAS  Google Scholar 

  48. Iwasawa, H. High- resolution angle-resolved photoemission spectroscopy and microscopy. Electron. Struct. 2020, 2, 043001.

    Article  CAS  Google Scholar 

  49. Wang, Y.; Dendzik, M. Recent progress in angle-resolved photoemission spectroscopy. Meas. Sci. Technol. 2024, 35, 042002.

    Article  Google Scholar 

  50. Yeh, J. J. Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters; Gordon & Breach Science, Publishers: Langhorne, 1993.

    Google Scholar 

  51. Yeh, J. J.; Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atom. Data Nucl. Data Tables 1985, 32, 1–155.

    Article  CAS  Google Scholar 

  52. Gréboval, C.; Chu, A.; Goubet, N.; Livache, C.; Ithurria, S.; Lhuillier, E. Mercury chalcogenide quantum dots: Material perspective for device integration. Chem. Rev. 2021, 121, 3627–3700.

    Article  PubMed  Google Scholar 

  53. Tian, Y. Y.; Luo, H. Q.; Chen, M. Y.; Li, C.; Kershaw, S. V.; Zhang, R.; Rogach, A. L. Mercury chalcogenide colloidal quantum dots for infrared photodetection: From synthesis to device applications. Nanoscale 2023, 15, 6476–6504.

    Article  CAS  PubMed  Google Scholar 

  54. Lhuillier, E.; Dang, T. H.; Cavallo, M.; Abadie, C.; Khalili, A.; Gréboval, C. Electronic structure of mercury chalcogenides nanocrystals. In Handbook of II–VI Semiconductor-Based Sensors and Radiation Detectors: Volume 1, Materials and Technology, Korotcenkov, G., Ed.; Springer: Cham, 2023; pp 133–156.

    Chapter  Google Scholar 

  55. Buurma, C.; Pimpinella, R. E.; Ciani, A. J.; Feldman, J. S.; Grein, C. H.; Guyot-Sionnest, P. MWIR imaging with low cost colloidal quantum dot films. In Proceedings of the SPIE 9933, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications 2016, San Diego, 2016, pp 993303.

  56. Zhang, S.; Bi, C.; Qin, T. L.; Liu, Y. F.; Cao, J.; Song, J. Q.; Huo, Y. J.; Chen, M. L.; Hao, Q.; Tang, X. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots. ACS Photonics 2023, 10, 673–682.

    Article  CAS  Google Scholar 

  57. Luo, Y. N.; Tan, Y. M.; Bi, C.; Zhang, S.; Xue, X. M.; Chen, M. L.; Hao, Q.; Liu, Y. F.; Tang, X. Megapixel large-format colloidal quantum-dot infrared imagers with resonant-cavity enhanced photoresponse. APL Photonics 2023, 8, 056109.

    Article  CAS  Google Scholar 

  58. Steckel, J. S.; Josse, E.; Pattantyus-Abraham, A. G.; Bidaud, M.; Mortini, B.; Bilgen, H.; Arnaud, O.; Allegret-Maret, S.; Saguin, F.; Mazet, L. et al. 1.62µm global shutter quantum dot image sensor optimized for near and shortwave infrared. In 2021 IEEE International Electron Devices Meeting (IEDM ), San Francisco, 2021, pp 23.4.1-23.4.4.

  59. Pang, C.; Deng, Y. H.; Kheradmand, E.; Poonkottil, N.; Petit, R.; Elsinger, L.; Detavernier, C.; Geiregat, P.; Hens, Z.; Van Thourhout, D. Integrated PbS colloidal quantum dot photodiodes on silicon nitride waveguides. ACS Photonics 2023, 10, 4215–4224.

    Article  CAS  PubMed  Google Scholar 

  60. Dang, T. H.; Cavallo, M.; Khalili, A.; Dabard, C.; Bossavit, E.; Zhang, H. C.; Ledos, N.; Prado, Y.; Lafosse, X.; Abadie, C. et al. Multiresonant grating to replace transparent conductive oxide electrode for bias selected filtering of infrared photoresponse. Nano Lett. 2023, 23, 8539–8546.

    Article  CAS  PubMed  Google Scholar 

  61. Seah, M. P.; Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11.

    Article  CAS  Google Scholar 

  62. Zhang, H. Y.; Pincelli, T.; Jozwiak, C.; Kondo, T.; Ernstorfer, R.; Sato, T.; Zhou, S. Y. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2022, 2, 54.

    Article  CAS  Google Scholar 

  63. Radosavljević, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2002, 2, 761–764.

    Article  Google Scholar 

  64. Song, X. X.; Zhang, Z. Z.; You, J.; Liu, D.; Li, H. O.; Cao, G.; Xiao, M.; Guo, G. P. Temperature dependence of coulomb oscillations in a few-layer two-dimensional WS2 quantum dot. Sci. Rep. 2015, 5, 16113.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gonzalez-Zalba, M. F.; Heiss, D.; Podd, G.; Ferguson, A. J. Tunable aluminium-gated single electron transistor on a doped silicon-on-insulator etched nanowire. Appl. Phys. Lett. 2012, 101, 103504.

    Article  Google Scholar 

  66. Dong, Y. F.; Chen, M. Y.; Yiu, W. K.; Zhu, Q.; Zhou, G. D.; Kershaw, S. V.; Ke, N.; Wong, C. P.; Rogach, A. L.; Zhao, N. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 Nm at room temperature. Adv. Sci. 2020, 7, 2000068.

    Article  CAS  Google Scholar 

  67. Chen, M. Y.; Lu, H. P.; Abdelazim, N. M.; Zhu, Y.; Wang, Z.; Ren, W.; Kershaw, S. V.; Rogach, A. L.; Zhao, N. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 Nm. ACS Nano 2017, 11, 5614–5622.

    Article  CAS  PubMed  Google Scholar 

  68. Gréboval, C.; Noumbe, U.; Goubet, N.; Livache, C.; Ramade, J.; Qu, J. L.; Chu, A.; Martinez, B.; Prado, Y.; Ithurria S. et al. Field-effect transistor and photo-transistor of narrow-band-gap nanocrystal arrays using ionic glasses. Nano Lett. 2019, 19, 3981–3986.

    Article  PubMed  Google Scholar 

  69. Gréboval, C.; Chu, A.; Magalhaes, D. V.; Ramade, J.; Qu, J. L.; Rastogi, P.; Khalili, A.; Chee, S. S.; Aubin, H.; Vincent, G. et al. Ferroelectric gating of narrow band-gap nanocrystal arrays with enhanced light-matter coupling. ACS Photonics 2021, 8, 259–268.

    Article  Google Scholar 

  70. Chee, S. S.; Gréboval, C.; Magalhaes, D. V.; Ramade, J.; Chu, A.; Qu, J. L.; Rastogi, P.; Khalili, A.; Dang, T. H.; Dabard, C. et al. Correlating structure and detection properties in HgTe nanocrystal films. Nano Lett. 2021, 21, 4145–4151.

    Article  CAS  PubMed  Google Scholar 

  71. Qin, T. L.; Mu, G.; Zhao, P. F.; Tan, Y. M.; Liu, Y. F.; Zhang, S.; Luo, Y. N.; Hao, Q.; Chen, M. L.; Tang, X. Mercury telluride colloidal quantum-dot focal plane array with planar p-n junctions enabled by in situ electric field-activated doping. Sci. Adv. 2023, 9, eadg7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dunfield, S. P.; Bojar, A.; Cacovich, S.; Frégnaux, M.; Klein, T.; Bramante, R.; Zhang, F.; Regaldo, D.; Dufoulon, V.; Puel, J. B. et al. Carrier gradients and the role of charge selective contacts in lateral heterojunction all back contact perovskite solar cells. Cell Rep. Phys. Sci. 2021, 2, 100520.

    Article  CAS  Google Scholar 

  73. Zhang, H. C.; Ledos, N.; Cavallo, M.; Bossavit, E.; Khalili, A.; Curti, L.; Xu, X. Z.; Dandeu, E.; Utterback, J. K.; Ithurria, S. et al. Photoemission insight on narrow band gap PbS quantum dots relevant for infrared imaging. J. Phys. Chem. C 2024, 128, 2028–2036.

    Article  CAS  Google Scholar 

  74. Gréboval, C.; Izquierdo, E.; Abadie, C.; Khalili, A.; Cavallo, M.; Chu, A.; Dang, T. H.; Zhang, H. C.; Lafosse, X.; Rosticher, M. et al. HgTe nanocrystal-based photodiode for extended short-wave infrared sensing with optimized electron extraction and injection. ACS Appl. Nano Mater. 2022, 5, 8602–8611.

    Article  Google Scholar 

  75. Ackerman, M. M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271.

    Article  CAS  PubMed  Google Scholar 

  76. Khalili, A.; Cavallo, M.; Bossavit, E.; Alchaar, R.; Dang, T. H.; Dabard, C.; Zhang, H. C.; Ledos, N.; Parahyba, V.; Potet, P. et al. In situ mapping of the vectorial electric field within a nanocrystal-based focal plane array using photoemission microscopy. ACS Appl. Electron. Mater. 2023, 5, 4377–4384.

    Article  CAS  Google Scholar 

  77. Avila, J.; Razado-Colambo, I.; Lorcy, S.; Lagarde, B.; Giorgetta, J. L.; Polack, F.; Asensio, M. C. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys.: Conf. Ser. 2013, 425, 192023.

    Google Scholar 

Download references

Acknowledgements

We thank Stephane Lorcy for the help in sample preparation. The project is supported by ERC grant blackQD (No. 756225) and AQDtive (No. 101086358). We acknowledge the use of clean-room facilities from the “Centrale de Proximité Paris-Centre” and support from Renatech for micro and nanofabrication. This work was supported by Region Ile de France through Sesame project INSIDE. This work was supported by a public grant overseen by the French National Research Agency (ANR) through the grants Frontal (No. ANR-19-CE09-0017), Copin (No. ANR-19-CE24-0022), Bright (No. ANR-21-CE24-0012-02), MixDferro (No. ANR-21-CE09-0029), Quicktera (No. ANR-22-CE09-0018), Operatwist (No. ANR-22-CE09-0037-01), E-map (No. ANR-23-CE50-0025), and as part of the “Investissements d’Avenir” program (Labex NanoSaclay, reference: ANR-10-LABX-0035). This project has received financial support from the CNRS through the MITI interdisciplinary programs (project WITHIN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Avila or Emmanuel Lhuillier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallo, M., Mastrippolito, D., Bossavit, E. et al. Operando investigation of nanocrystal-based device energy landscape: Seeing the current pathway. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6622-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6622-5

Keywords

Navigation