Skip to main content
Log in

Embeddability of Snowflaked Metrics with Applications to the Nonlinear Geometry of the Spaces L p and p for 0<p<∞

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the classical spaces L p and p for the whole range 0<p<∞ from a metric viewpoint. As we go along, we look over some of the results and techniques that, together with our work in this paper, have permitted us to obtain a complete Lipschitz embeddability roadmap between any two of those spaces when equipped with their ad hoc distances and their snowflakings. Through connections with weaker forms of embeddings that lead to basic (yet fundamental) open problems, we also set the challenging goal of understanding the dissimilarities between the well-known subspace structure and the different nonlinear geometries that coexist inside L p and p .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Advances in metric embedding theory. Adv. Math. 228(6), 3026–3126 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aharoni, I.: Every separable metric space is Lipschitz equivalent to a subset of \(c^{+}_{0}\). Isr. J. Math. 19, 284–291 (1974)

    Article  MathSciNet  Google Scholar 

  3. Albiac, F.: Nonlinear structure of some classical quasi-Banach spaces and F-spaces. J. Math. Anal. Appl. 340, 1312–1325 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006), xii+373 pp

    Google Scholar 

  5. Aronszajn, N.: Differentiability of Lipschitzian mappings between Banach spaces. Stud. Math. 57, 147–190 (1976)

    MATH  MathSciNet  Google Scholar 

  6. Assouad, P.: Plongements Lipschitziens dans R n. Bull. Soc. Math. Fr. 111, 429–448 (1983) (French, with English summary)

    MATH  MathSciNet  Google Scholar 

  7. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence, (2000)

    Google Scholar 

  8. Bretagnolle, J. Dacunha-Castelle, D., Krivine, J.-L.: Fonctions de type positif sur les espaces L p. C. R. Acad. Sci. Paris 261, 2153–2156 (1965) (in French)

    MATH  MathSciNet  Google Scholar 

  9. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  10. Christensen, J.P.R.: Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. Publ. Dép. Math. (Lyon) 10, 29–39 (1973). Actes du Deuxième Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), vol. I, pp. 29–39

    MATH  Google Scholar 

  11. Dadarlat, M., Guentner, E.: Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Am. Math. Soc. 355(8), 3253–3275 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Enflo, P.: Uniform structures and square roots in topological groups. I, II. Isr. J. Math. 8, 230–252, 253–272 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Enflo, P.: On infinite-dimensional topological groups. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), École Polytech., Palaiseau (1978), Exp. No. 10–11, 11

    Google Scholar 

  14. Faver, T., Kochalski, K., Murugan, M., Verheggen, H., Wesson, E., Weston, A.: Classifications of ultrametric spaces according to roundness. arXiv:1201.6669v2

  15. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, 1–295. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  16. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext. Springer, New York (2001)

    Book  MATH  Google Scholar 

  17. Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Stud. Math. 73, 225–251 (1982)

    MATH  MathSciNet  Google Scholar 

  18. Johnson, W.B., Randrianarivony, N.L.: l p (p>2) does not coarsely embed into a Hilbert space. Proc. Am. Math. Soc. 134, 1045–1050 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kahane, J.P.: Hélices et quasi-hélices, Mathematical analysis and applications, Part B. In: Adv. in Math. Suppl. Stud., pp. 417–433. Academic Press, New York (1981)

    Google Scholar 

  20. Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-Space Sampler, London Mathematical Society Lecture Note Series, vol. 89. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  21. Mankiewicz, P.: On the differentiability of Lipschitz mappings in Fréchet spaces. Stud. Math. 45, 15–29 (1973)

    MATH  MathSciNet  Google Scholar 

  22. Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Adv. Math. 189, 451–494 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mendel, M., Naor, A.: Metric cotype. Ann. Math. 168, 247–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Naor, A., Neiman, O.: Assouad’s theorem with dimension independent of the snowflaking. arXiv:1012.2307

  25. Naor, A., Schechtman, G.: Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math. 552, 213–236 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Nowak, P.W.: On coarse embeddability into l p -spaces and a conjecture of Dranishnikov. Fundam. Math. 189(2), 111–116 (2006)

    Article  MATH  Google Scholar 

  27. Pisier, G.: Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985). In: Lecture Notes in Math., vol. 1206, pp. 167–241. Springer, Berlin (1986)

    Google Scholar 

  28. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44, 522–536 (1938)

    Article  MathSciNet  Google Scholar 

  29. Talagrand, M.: Approximating a helix in finitely many dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 28(3), 355–363 (1992)

    MATH  MathSciNet  Google Scholar 

  30. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139, 201–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is very grateful to Bill Johnson and Gideon Schechtman for various enlightening discussions on the topics covered in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Albiac.

Additional information

Communicated by Loukas Grafakos.

This article grew out of the authors’ stay at the Mathematical Sciences Research Institute in Berkeley, California, as research members in the Quantitative Geometry program held in the fall of 2011, partially supported by NSF grant DMS-0932078 administered by the MSRI. The authors also acknowledge the support of the Spanish Ministerio de Ciencia e Innovación Research Grant Operadores, retículos, y geometría de espacios de Banach, reference number MTM2008-02652/MTM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albiac, F., Baudier, F. Embeddability of Snowflaked Metrics with Applications to the Nonlinear Geometry of the Spaces L p and p for 0<p<∞. J Geom Anal 25, 1–24 (2015). https://doi.org/10.1007/s12220-013-9390-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9390-0

Keywords

Mathematics Subject Classification

Navigation