Skip to main content
Log in

Local convergence analysis of L1-ADI scheme for two-dimensional reaction-subdiffusion equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an alternating direction implicit (ADI) difference method to solve the two-dimensional time-fractional reaction-subdiffusion equation with weakly singular solutions, where L1 scheme on graded mesh is used to capture the initial weak singularity. Global and local convergences of L1-ADI scheme on graded mesh are studied with the comparison principle. The temporal global convergence rate of the fully discrete L1-ADI scheme is \(O(N^{-\min \{ 2-\alpha ,2\alpha ,\alpha r\}})\) and the temporal local convergence rate can attain \(O(N^{-\min \{ 2-\alpha , 2\alpha \}})\) when \(r> 2-\alpha \), where N, \(\alpha \), and r are the time partition number, order of fractional derivative, and grading parameter, respectively. Numerical experiments are proposed to verify the sharpness of our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data included in this study are available upon reasonable request.

References

  1. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018)

    Article  Google Scholar 

  2. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Engrg. 346, 332–358 (2019). https://doi.org/10.1016/j.cma.2018.12.011

    Article  MathSciNet  Google Scholar 

  3. Stynes, M.: A survey of the L1 scheme in the discretisation of time-fractional problems. Numer. Math. Theory Methods Appl. 15(4), 1173–1192 (2022)

    Article  MathSciNet  Google Scholar 

  4. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018). https://doi.org/10.1137/17M1131829

    Article  MathSciNet  Google Scholar 

  5. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58(4), 2212–2234 (2020). https://doi.org/10.1137/20M1313015

    Article  MathSciNet  Google Scholar 

  6. Liao, H.-l, Zhao, Y., Teng, X.-h: A weighted ADI scheme for subdiffusion equations. J. Sci. Comput 69(3), 1144–1164 (2016). https://doi.org/10.1007/s10915-016-0230-9

    Article  MathSciNet  Google Scholar 

  7. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014). https://doi.org/10.1016/j.jcp.2013.10.040

    Article  MathSciNet  Google Scholar 

  8. Wang, Y., Chen, H.: Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation. Comput. Math. Appl. 99, 155–161 (2021). https://doi.org/10.1016/j.camwa.2021.08.012

    Article  MathSciNet  Google Scholar 

  9. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. Appl. Math. Comput. 387, 124564–10 (2020). https://doi.org/10.1016/j.amc.2019.124564

    Article  MathSciNet  Google Scholar 

  10. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016). https://doi.org/10.1016/j.jcp.2015.11.058

    Article  MathSciNet  Google Scholar 

  11. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014). https://doi.org/10.1016/j.jcp.2014.03.020

    Article  MathSciNet  Google Scholar 

  12. Hou, Y., Wen, C., Liu, Y., Li, H.: A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Netw. Heterog. Media 18(2), 855–876 (2023). https://doi.org/10.3934/nhm.2023037

    Article  MathSciNet  Google Scholar 

  13. Qiu, W., Fairweather, G., Yang, X., Zhang, H.: ADI finite element Galerkin methods for two-dimensional tempered fractional integro-differential equations. Calcolo 60(3), 41–34 (2023). https://doi.org/10.1007/s10092-023-00533-5

    Article  MathSciNet  Google Scholar 

  14. Saffarian, M., Mohebbi, A.: A novel ADI Galerkin spectral element method for the solution of two-dimensional time fractional subdiffusion equation. Int. J. Comput. Math. 98(4), 845–867 (2021). https://doi.org/10.1080/00207160.2020.1792450

    Article  MathSciNet  Google Scholar 

  15. Wang, Y., Zhu, B., Chen, H.: \(\alpha \)-robust \(H^1\)-norm convergence analysis of L1FEM-ADI scheme for 2D/3D subdiffusion equation with initial singularity. Math. Methods Appl. Sci. 46(15), 16144–16155 (2023)

    Article  MathSciNet  Google Scholar 

  16. Chen, H., Lü, S., Chen, W.: Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel. Comput. Math. Appl. 71(9), 1818–1830 (2016). https://doi.org/10.1016/j.camwa.2016.02.024

    Article  MathSciNet  Google Scholar 

  17. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52(6), 2599–2622 (2014). https://doi.org/10.1137/130934192

    Article  MathSciNet  Google Scholar 

  18. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions. SIAM J. Numer. Anal. 58(2), 1217–1238 (2020). https://doi.org/10.1137/19M1300686

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported in part by Natural Science Foundation of Shandong Province under Grant ZR2023MA077, Fundamental Research Funds for the Central Universities (No. 202264006), and the National Natural Science Foundation of China under Grant 11801026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Chen.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chen, H. Local convergence analysis of L1-ADI scheme for two-dimensional reaction-subdiffusion equation. J. Appl. Math. Comput. 70, 1953–1964 (2024). https://doi.org/10.1007/s12190-024-02037-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02037-z

Keywords

Mathematics Subject Classification

Navigation