Skip to main content
Log in

Influence of yielding base and rigid base on propagation of Rayleigh-type wave in a viscoelastic layer of Voigt type

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The present study aims to study the propagation of Rayleigh-type wave in a layer, composed of isotropic viscoelastic material of Voigt type, with the effect of yielding base and rigid base in two distinct cases. With the aid of an analytical treatment, closed-form expressions of phase velocity and damped velocity for both the cases are deduced. As a special case of the problem it is found that obtained results are in good agreement with the established standard results existing in the literature. It is established through the study that volume-viscoelastic and shear-viscoelastic material parameter and yielding parameter have significant effect on phase and damped velocities of Rayleigh-type wave in both the cases. Numerical calculations and graphical illustration have been carried out for both the considered cases in the presence and the absence of viscoelasticity. A comparative study has been performed to analyse the effect of layer with yielding base, traction-free base and rigid base on the phase and damped velocities of Rayleigh-type wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Telford W M et al 1990 Applied geophysics. Cambridge: Cambridge University Press, p. 149, ISBN 978-0-521-33938-4

  2. Lay T and Wallace T C 1995 Modern global seismology. Cambridge: Academic press (chapter 1)

  3. Ewing W M, Jardetzky W S and Press F 1957 Elastic waves in layered media. New York: McGraw-Hill, p. 273

    MATH  Google Scholar 

  4. Ben-Menahem A 1995 Review—a concise history of mainstream seismology: origins legacy and perspectives. Bull. Seismol. Soc. Am. 85(4): 1202–1225

    Google Scholar 

  5. Horton C W 1953 On the propagation of Rayleigh waves on the surface of a visco-elastic solid. Geophysics 18: 70–74

    Article  Google Scholar 

  6. Carcione J M 1992 Rayleigh waves in isotropic viscoelastic media. Geophys. J. Int. 108: 453–464

    Article  Google Scholar 

  7. Buchwald V T 1960 Rayleigh waves in anisotropic media. Q. J. Mech. Appl. Math. 14(4): 461–469

    Article  MathSciNet  MATH  Google Scholar 

  8. Das T K and Sengupta P R 1990 Surface wave of general viscoelastic medium of higher order. Int. J. Pure Appl. Math. 21(7): 661–675

    MATH  Google Scholar 

  9. Biot M A 1940 The influence of initial stress on elastics waves. J. Appl. Phys. 11(8): 522–530

    Article  MathSciNet  MATH  Google Scholar 

  10. Chattopadhyay A, Mahata N P and Keshri A 1986 Rayleigh waves in a medium under initial stresses. Acta Geophys. Pol. 34(1): 57–62

    Google Scholar 

  11. Dutta S 1965 Rayleigh wave propagation in a two-layer anisotropic media. Pure Appl. Geophys. 60(1): 51–60

    Article  MATH  Google Scholar 

  12. Abd-Alla A M 1999 Propagation of Rayleigh waves in an elastic half-space of orthotropic material. Appl. Math. Comput. 99(1): 61–69

    MathSciNet  MATH  Google Scholar 

  13. Pradhan A, Samal S and Mahanti N 2002 Shear waves in a fluid saturated elastic plate. Sadhana 27(6): 595–600

    Article  MATH  Google Scholar 

  14. Acharya D and Mondol A 2002 Propagation of Rayleigh surface waves with small wavelengths in nonlocal viscoelastic solids. Sadhana 27(6): 605–612

    Article  MATH  Google Scholar 

  15. Lakes R S 2009 Viscoelastic materials. Cambridge: Cambridge University Press

  16. Borcherdt R D 2009 Viscoelastic waves in layered media. Cambridge: Cambridge University Press

  17. Midorikawa M et al 2002 Earthquake response reduction of buildings by rocking structural systems. In: Proceedings of SPIE, Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways, vol. 4696, San Diego, CA. doi:10.1117/12.472562

  18. Azuhata T et al 2008 Earthquake damage reduction of buildings by self-centering systems using rocking mechanism. In: Proceedings of the 14 th World Conference on Earthquake Engineering, October 12–17, Beijing, China

    Google Scholar 

  19. Azuhata T et al 2004 Simplified prediction method for seismic response of rocking structural systems with yielding base plates. In: Proceedings of the 13 th World Conference on Earthquake Engineering, Vancouver, Canada, August 1–6, Paper No. 371

  20. Hushmand A et al 2004 Seismic performance of underground reservoir structures: insight from centrifuge modeling on the influence of structure stiffness. J. Geotech. Geoenvironmental Eng. 142(7): 04016020.

    Article  Google Scholar 

  21. Sezawa K and Kanai K 1934 On the propagation of waves along a surface stratum of the earth. Bull. Earthq. Res. Inst. 12: 263–268

    MATH  Google Scholar 

  22. Heaps H S 1953 Stresses in the Earth’s crust under an axial symmetrical load. EOS Trans. Am. Geophys. Union 34(5): 769–775

    Article  Google Scholar 

  23. Gupta S C D 1954 Propagation of Rayleigh waves in a layer resting on a yielding medium. Bull. Seismol. Soc. Am. 45(2): 115–119

    Google Scholar 

  24. Biot M A 1965 Mechanics of incremental deformations. New York: Wiley

    Google Scholar 

  25. Kolsky H 1963 Stress waves in solids. New York: Dover, pp. 99–129

  26. Arfken G B and Weber H J 2001 Mathematical methods for physics. USA: Academic Press, pp. 96–101

  27. Gubbins D 1990 Seismology and plate tectonics. Cambridge: Cambridge University Press, p. 170

    Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to Indian School of Mines, Dhanbad, for providing JRF to Ms. Shalini Saha and Mr. Kshitish Ch. Mistri and also facilitating us with its best facility for research. The authors sincerely acknowledge National Board of Higher Mathematics (NBHM) for providing financial support to carry out this research work through the project titled “Mathematical modelling of elastic wave propagation in highly anisotropic and heterogeneous media”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Saha.

Appendix A

Appendix A

$$ \begin{aligned} S_{1} & = \left( {A_{1} - A_{2} } \right)\left\{ {\mu \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) - 2p\mu^{\prime}E_{2} F_{2} } \right\} \\ & \quad - \,\left( {B_{1} - B_{2} } \right)\left\{ {p\mu^{\prime}\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 2E_{2} F_{2} \mu } \right\}, \\ \end{aligned} $$
$$ \begin{aligned} S_{2} & = \left( {B_{1} - B_{2} } \right)\left\{ {\mu \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) - 2p\mu^{\prime}E_{2} F_{2} } \right\} \\ & \quad + \,\left( {A_{1} - A_{2} } \right)\left\{ {p\mu^{\prime}\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 2E_{2} F_{2} \mu } \right\}, \\ \end{aligned} $$
$$ \begin{aligned} S_{3} & = E_{1} C_{1} - F_{1} D_{1} - M_{1} C_{2} + N_{1} D_{2} , \\ S_{4} & = F_{1} C_{1} - N_{1} C_{2} - M_{1} D_{2} + D_{1} E_{1} , \\ \end{aligned} $$
$$ \begin{aligned} S_{5} & = 2\xi \left\{ {E_{1} \left( {A_{1} - A_{2} } \right) - F_{1} \left( {B_{1} - B_{2} } \right)} \right\}, \\ S_{6} & = 2\xi \left\{ {E_{1} \left( {B_{1} - B_{2} } \right) + F_{1} \left( {A_{1} - A_{2} } \right)} \right\}, \\ \end{aligned} $$
$$ \begin{aligned} S_{7} & = \mu \left\{ {\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)C_{1} - 2D_{1} E_{2} F_{2} } \right\} \\ & \quad - \,p\mu^{\prime}\left\{ {2C_{1} E_{2} F_{2} + D_{1} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)} \right\} \\ & \quad - \,M_{2} C_{2} + N_{2} D_{2} , \\ \end{aligned} $$
$$ \begin{aligned} S_{8} & = p\mu^{\prime}\left\{ {\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)C_{1} - 2D_{1} E_{2} F_{2} } \right\} \\ & \quad + \,\mu \left\{ {2C_{1} E_{2} F_{2} + D_{1} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)} \right\} \\ & \quad - \,N_{2} C_{2} - D_{2} M_{2} , \\ \end{aligned} $$
$$ \begin{aligned} S_{9} & = E_{1} A_{1} - F_{1} B_{1} - A_{2} M_{3} + B_{2} N_{3} , \\ S_{10} & = F_{1} A_{1} - B_{2} M_{3} - A_{2} N_{3} + B_{1} E_{1} , \\ \end{aligned} $$
$$ \begin{aligned} S_{11} & = 2\xi \left( {E_{1} C_{1} - D_{1} F_{1} } \right) - M_{4} C_{2} + N_{4} D_{2} , \\ S_{12} & = 2\xi \left( {F_{1} C_{1} + D_{1} E_{1} } \right) - N_{4} C_{2} - M_{4} D_{2} , \\ \end{aligned} $$
$$ \begin{aligned} M_{1} & = \frac{{E_{2} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 2E_{2} F_{2}^{2} }}{{2\left( {E_{2}^{2} + F_{2}^{2} } \right)}}, \\ N_{1} & = \frac{{2E_{2}^{2} F_{2} - F_{2} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)}}{{2\left( {E_{2}^{2} + F_{2}^{2} } \right)}}, \\ \end{aligned} $$
$$ M_{2} = 4\xi^{2} \frac{{\left( {E_{1} E_{2} - F_{1} F_{2} } \right).\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 2E_{2} F_{2} \left( {F_{1} E_{2} + F_{2} E_{1} } \right)}}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}, $$
$$ N_{2} = 4\xi^{2} \frac{{\left( {F_{1} E_{2} + F_{2} E_{1} } \right)\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) - 2E_{2} F_{2} \left( {E_{1} E_{2} - F_{1} F_{2} } \right)}}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}, $$
$$ \begin{aligned} M_{3} & = 2\xi^{2} \frac{{E_{1} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 2E_{2} F_{2} F_{1} }}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}, \\ N_{3} & = 2\xi^{2} \frac{{F_{1} \left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) - 2E_{2} F_{2} E_{1} }}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}, \\ \end{aligned} $$
$$ M_{4} = \frac{{E_{2} \left( {\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} - 4E_{2}^{2} F_{2}^{2} } \right) + 4\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)E_{2} F_{2}^{2} }}{{2\xi^{2} \left( {E_{2}^{2} + F_{2}^{2} } \right)}}, $$
$$ N_{4} = \frac{{F_{2} \left( {\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} - 4E_{2}^{2} F_{2}^{2} } \right) + 4\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)E_{2}^{2} F_{2} }}{{2\xi^{2} \left( {E_{2}^{2} + F_{2}^{2} } \right)}}, $$
$$ \begin{aligned} A_{1} & = \text{coshE}_{1} H\text{cosF}_{1} H,\quad B_{1} = \text{sinhE}_{1} H\text{sinF}_{1} H, \\ A_{2} & = \text{coshE}_{2} H\text{cosF}_{2} H,\quad B_{2} = \text{sinhE}_{2} H\text{sinF}_{2} H, \\ \end{aligned} $$
$$ \begin{aligned} C_{1} & = \text{sinhE}_{1} H\text{cosF}_{1} H,\quad D_{1} = \text{coshE}_{1} H\text{sinF}_{1} H, \\ C_{2} & = \text{sinhE}_{2} H\text{cosF}_{2} H,\quad D_{2} = \text{coshE}_{2} H\text{sinF}_{2} H, \\ \end{aligned} $$
$$ E_{1} = (a_{1}^{2} + b_{1}^{2} )^{{\frac{1}{4}}} \cos \left( {\frac{{\theta_{1} }}{2}} \right),\quad F_{1} = (a_{1}^{2} + b_{1}^{2} )^{{\frac{1}{4}}} \sin \left( {\frac{{\theta_{1} }}{2}} \right), $$
$$ E_{2} = (a_{2}^{2} + b_{2}^{2} )^{{\frac{1}{4}}} \cos \left( {\frac{{\theta_{2} }}{2}} \right),\quad F_{2} = (a_{2}^{2} + b_{2}^{2} )^{{\frac{1}{4}}} \sin \left( {\frac{{\theta_{2} }}{2}} \right), $$
$$ a_{1} = \xi^{2} - \frac{{\rho p^{2} \left( {\lambda + 2\mu } \right)}}{{(\lambda + 2\mu )^{2} + p^{2} (\lambda^{\prime} + 2\mu^{\prime})^{2} }},\quad a_{2} = \xi^{2} - \frac{{\rho p^{2} \mu }}{{\mu^{2} + p^{2} \mu^{\prime 2} }}, $$
$$ \begin{aligned} b_{1} & = \frac{{\rho p^{3} \left( {\lambda^{\prime } + 2\mu^{\prime } } \right)}}{{(\lambda + 2\mu )^{2} + p^{2} (\lambda^{\prime} + 2\mu^{\prime})^{2} }},\quad b_{2} = \frac{{\rho p^{3} \mu^{\prime}}}{{\mu^{2} + p^{2} \mu^{\prime 2} }}, \\ \theta_{1} & = \tan^{ - 1} \left( {\frac{{b_{1} }}{{a_{1} }}} \right),\quad \theta_{2} = \tan^{ - 1} \left( {\frac{{b_{2} }}{{a_{2} }}} \right). \\ \end{aligned} $$
$$ \begin{aligned} R_{1} & = P_{1} A_{1} - Q_{1} B_{1} - A_{2} \left( {P_{1}^{2} - Q_{1}^{2} } \right) + 2B_{2} P_{1} Q_{1} , \\ R_{2} & = Q_{1} A_{1} + P_{1} B_{1} - B_{2} \left( {P_{1}^{2} - Q_{1}^{2} } \right) - 2A_{2} P_{1} Q_{1} , \\ R_{3} & = P_{1} A_{1} - Q_{1} B_{1} - A_{2} ,R_{4} = Q_{1} A_{1} + P_{1} B_{1} - B_{2} , \\ R_{5} & = P_{2} C_{1} - Q_{2} D_{1} - C_{2} ,R_{6} = P_{2} D_{1} + Q_{2} C_{1} - D_{2} , \\ R_{7} & = P_{2} C_{1} - Q_{2} D_{1} - C_{2} \left( {P_{2}^{2} - Q_{2}^{2} } \right) + 2P_{2} Q_{2} C_{2} , \\ R_{8} & = P_{2} D_{1} + Q_{2} C_{1} - D_{2} \left( {P_{2}^{2} - Q_{2}^{2} } \right) - 2P_{2} Q_{2} C_{2} , \\ \end{aligned} $$
$$ \begin{aligned} P_{1} & = \frac{{\xi^{2} + E_{2}^{2} - F_{2}^{2} }}{{\xi^{2} }}, \\ P_{2} & = \left\{ {\frac{{2\left( {E_{1} E_{2} - F_{1} F_{2} } \right)\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right) + 4E_{2} F_{2} \left( {E_{2} F_{1} + E_{1} F_{2} } \right)}}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}} \right\}, \\ \end{aligned} $$
$$ \begin{aligned} Q_{1} & = \frac{{E_{2} F_{2} }}{{\xi^{2} }}, \\ Q_{2} & = \left\{ {\frac{{4E_{2} F_{2} \left( {E_{1} E_{2} - F_{1} F_{2} } \right) + 2\left( {E_{2} F_{1} + E_{1} F_{2} } \right)\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)}}{{\left( {\xi^{2} + E_{2}^{2} - F_{2}^{2} } \right)^{2} + 4E_{2}^{2} F_{2}^{2} }}} \right\}. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Chattopadhyay, A., Mistri, K.C. et al. Influence of yielding base and rigid base on propagation of Rayleigh-type wave in a viscoelastic layer of Voigt type. Sādhanā 42, 1459–1471 (2017). https://doi.org/10.1007/s12046-017-0690-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0690-0

Keywords

Navigation