Skip to main content
Log in

Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3′-untranslated region (3′UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ardlie KG, Deluca DS, Segre AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, Tukiainen T, Lek M (2015) The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660

    Article  Google Scholar 

  • Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368:210–215

    Article  PubMed  Google Scholar 

  • Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why are autism spectrum conditions more prevalent in males. PLoS Biol 9:e1001081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braida D, Guerini F, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R, Fornasari D, Chiappedi M (2015) Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 5:e500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36:2044–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean, A., Sullivan, K. & Soe, M. 2009. Open source epidemiologic statistics for public health, version. Updated 2009/19/09. Available from: http://wwwopenepi.com. (10 Nov 2010).

  • Dorahy, M. 2014. The Diagnostic and Statistical Manual of Mental Disorders–5th edition (DSM-5).

  • Fanous A, Zhao Z, Van Den Oord E, Maher B, Thiselton D, Bergen S, Wormley B, Bigdeli T, Amdur R, O’neill F (2010) Association study of SNAP25 and schizophrenia in irish family and case–control samples. Am J Med Genet B Neuropsychiatr Genet 153:663–674

    Google Scholar 

  • Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12:3257–3262

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W, Malone M, Swanson J (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. Journal of psychiatry & neuroscience: JPN 34:361

    Google Scholar 

  • Golimbet V, Alfimova M, Gritsenko I, Lezheiko T, Lavrushina O, Abramova L, Kaleda V, Barkhatova A, Sokolov A, Ebstein R (2010) Association between a synaptosomal protein (SNAP-25) gene polymorphism and verbal memory and attention in patients with endogenous psychoses and mentally healthy subjects. Neurosci Behav Physiol 40:461–465

    Article  CAS  PubMed  Google Scholar 

  • Gosso M, De Geus E, Van Belzen M, Polderman T, Heutink P, Boomsma D, Posthuma D (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886

    Article  CAS  PubMed  Google Scholar 

  • Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M (2011) SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 64:283–288

    Article  CAS  PubMed  Google Scholar 

  • Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M, Bellgrove MA (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One 8:e60274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21:257–261

    Article  CAS  PubMed  Google Scholar 

  • Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, Sousa I, Mulder EJ, Kantojärvi K, Järvelä I, Klauck SM (2010) Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet 18:1013–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li H-Y, Arango V, Mann JJ, Dwork AJ, Trimble WS (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12:349–356

    Article  PubMed  Google Scholar 

  • Kim J, Biederman J, Arbeitman L, Fagerness J, Doyle A, Petty C, Perlis R, Purcell S, Smoller J, Faraone S (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 144:781–790

    Article  Google Scholar 

  • Kustanovich V, Merriman B, Mcgough J, Mccracken J, Smalley S, Nelson S (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315

    Article  CAS  PubMed  Google Scholar 

  • Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17

    Article  CAS  PubMed  Google Scholar 

  • Levy SE, Schultz RT (2009) Autism Lancet 374:1627–1638

    Article  PubMed  Google Scholar 

  • Lochman J, Balcar VJ, Šťastný F, Šerý O (2013) Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory regions of the ADRA2A, DRD3 and SNAP-25 genes. Psychiatry Res 205:7–12

    Article  CAS  PubMed  Google Scholar 

  • Michaelis RC, Skinner SA, Deason R, Skinner C, Moore CL, Phelan MC (1997) Intersitial deletion of 20p: new candidate region for Hirschsprung disease and autism? Am J Med Genet 71:298–304

    Article  CAS  PubMed  Google Scholar 

  • Mishra PJ, Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7:853–858

    Article  CAS  PubMed  Google Scholar 

  • Moore SJ, Green JS, Fan Y, Bhogal AK, Dicks E, FErnandez BA, Stefanelli M, Murphy C, Cramer BC, Dean J (2005) Clinical and genetic epidemiology of Bardet–Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A 132:352–360

    Article  PubMed Central  Google Scholar 

  • Nemeth N, Kovács-nagy R, Szekely A, Sasvári-szekely M, Rónai Z (2013) Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One 8:e84207

    Article  PubMed  PubMed Central  Google Scholar 

  • Noroozi R, Taheri M, Movafagh A, Mirfakhraie R, Solgi G, Sayad A, Mazdeh M, Darvish H (2016) Glutamate receptor, metabotropic 7 (GRM7) gene variations and susceptibility to autism: a case-control study. Autism Res 9(11):1161–1168

  • Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  CAS  PubMed  Google Scholar 

  • Russell VA, Sagvolden T, Johansen EB (2005) Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 1:1

    Article  Google Scholar 

  • Rutter M, Le Couteur A, Lord C, Faggioli R (2003) Autism diagnostic interview-revised. Western Psychological Services, Los Angeles

  • Safari MR, Ghafouri-Fard S, Noroozi R, Sayad A, Omrani MD, Komaki A, Eftekharian MM, Taheri M (2016) FOXP3 gene variations and susceptibility to autism: a case–control study. Gene.

  • Sarkar K, Bhaduri N, Ghosh P, Sinha S, Ray A, Chatterjee A, Mukhopadhyay K (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37:349–357

    Article  CAS  PubMed  Google Scholar 

  • Sauter S, Von Beust G, Burfeind P, Weise A, Starke H, Liehr T, Zoll B (2003) Autistic disorder and chromosomal mosaicism 46, XY [123]/46, XY, del (20)(pter→ p12. 2)[10]. Am J Med Genet A 120:533–536

    Article  Google Scholar 

  • Scarr E, Gray L, Keriakous D, Robinson P, Dean B (2006) Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 8:133–143

    Article  CAS  PubMed  Google Scholar 

  • Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley SL (1997) Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 60:1276–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderqvist S, Mcnab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2010) The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 68:1120–1125

    Article  PubMed  Google Scholar 

  • Spooren W, Lindemann L, Ghosh A, Santarelli L (2012) Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 33:669–684

    Article  CAS  PubMed  Google Scholar 

  • Thompson PM, Sower AC, Perrone-Bizzozero NI (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43:239–243

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57:252–260

    Article  CAS  PubMed  Google Scholar 

  • Vawter M, Thatcher L, Usen N, Hyde T, Kleinman J, Freed W (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 7:571–578

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Mccoy, P. A., Rodriguiz, R. M., Pan, Y., Je, H. S., Roberts, A. C., Kim, C. J., Berrios, J., Colvin, J. S. & Bousquet-Moore, D. 2011. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human molecular genetics, ddr212.

  • Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934

    Article  CAS  PubMed  Google Scholar 

  • Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Benditó G, Molnár Z, Becher MW, Valenzuela CF, Partridge LD (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26

    CAS  PubMed  Google Scholar 

  • Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler MB, Sheu L, Ghai M, Bouquillon A, Grondin G, Weller U, Beaudoin AR, Bennett M, Trimble W, Gaisano H (1996) Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology 137:1340–1348

    CAS  PubMed  Google Scholar 

  • Williams P, Wetherbee J, Rosenfeld J, Hersh J (2011) 20p11 deletion in a female child with panhypopituitarism, cleft lip and palate, dysmorphic facial features, global developmental delay and seizure disorder. Am J Med Genet A 155:186–191

    Article  Google Scholar 

  • Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24:51–57

    Article  CAS  PubMed  Google Scholar 

  • Wojcik SM, Brose N (2007) Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55:11–24

    Article  CAS  PubMed  Google Scholar 

  • Woldemichael, B. T. & Mansuy, I. M. 2015. Micro-RNAs in cognition and cognitive disorders: potential for novel biomarkers and therapeutics. Biochemical pharmacology.

  • Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhu S, Zhu Y, Chen J, Zhang G, Chang H (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15:48–52

    Article  PubMed  Google Scholar 

  • Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4:a009886

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to offer our sincere gratitude to the State Welfare Organization and Departments of Special Education of Tehran, Hamadan, Ahvaz, Mashhad, Esfahan, and Abadan. We are also grateful to all the honorable patients and volunteer subjects as controls and their families. This study was funded by the Hamadan University of Medical Sciences (grant number 9504081836) and was supported by the Department of Medical Genetics of Shahid Beheshti University of Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taheri.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional Hamadan University of Medical Sciences (IR.UMSHA.REC.1394.521).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M.r., Omrani, M.D., Noroozi, R. et al. Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population. J Mol Neurosci 61, 305–311 (2017). https://doi.org/10.1007/s12031-016-0860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0860-2

Keywords

Navigation