Skip to main content
Log in

Explicit fundamental solution for the operator \(L+\alpha |T|\) on the Gelfand pair \((\mathbb {H}_{n},U(n))\).

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

By means of the spherical functions associated to the Gelfand pair \((\mathbb {H}_{n},U(n))\) we define the operator \(L+\alpha |T|\), where L denotes the Heisenberg sublaplacian and T denotes the central element of the Heisenberg Lie algebra, we establish a notion of fundamental solution and explicitly compute in terms of the Gauss hypergeometric function. For \(\alpha <n\) we use the Integral Representation Theorem to obtain a more detailed expression. Finally, we remark that when \(\alpha =0\) we recover the fundamental solution for the Heisenberg sublaplacian given by Folland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also the book of Rainville on Special Functions [14] and the comprehensive work of [11].

References

  1. Benson, C., Jenkins, J., Ratcliff, G.: Bounded K-spherical functions on Heisenberg groups. J. Funct. An. 105–2, 409–443 (1992). https://doi.org/10.1016/0022-1236(92)90083-U

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, C., Dooley, A.H., Ratcliff, G.: Fundamental solutions for powers of the Heisenberg sub-Laplacian. Ill. J. Math. 37–3, 455–476 (1993)

    Article  MathSciNet  Google Scholar 

  3. Cardoso, I., Saal, L.: Explicit fundamental solutions of some second order differential operators on Heisenberg groups. Coll. Math 129–2, 263–288 (2012)

    Article  MathSciNet  Google Scholar 

  4. Dutka, J.: The incomplete beta function. A Hist. Profile, Arch. Hist. Exact Sci. 24, 11–29 (1981)

    Article  Google Scholar 

  5. Faraut, J., Harzallah, K.: Deux Cours d’Analyse Harmonique, progress in mathematics. Birkhauser, Basel (1987)

    MATH  Google Scholar 

  6. Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79, 373–376 (1973)

    Article  MathSciNet  Google Scholar 

  7. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)

    Article  MathSciNet  Google Scholar 

  8. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  Google Scholar 

  9. Godoy, T., Saal, L.: \(L^{2}\) spectral decomposition on the Heisenberg group associated to the action of \(U(p, q)\). Pacific J. of Math. 193–2, 327–353 (2000)

    Article  Google Scholar 

  10. Godoy, T., Saal, L.: On the relative fundamental solutions for a second order differential operator on the Heisenberg group. Stud. Math. 145–2, 143–164 (2001)

    Article  MathSciNet  Google Scholar 

  11. Julie Patricia Hannah, Identities for the gamma and hypergeometric functions: an overview from Euler to the present, Ph.D. thesis, (2013)

  12. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)

    Article  MathSciNet  Google Scholar 

  13. Müller, D., Ricci, F.: On the laplace-beltrami operator on the oscillator group. J. Reine. Angwe. Math. 390, 193–207 (1988). https://doi.org/10.1515/crll.1988.390.193

    Article  MathSciNet  MATH  Google Scholar 

  14. Rainville, E.D.: Special functions. Chelsea Publishing Company, New York (1960)

    MATH  Google Scholar 

  15. Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  16. Strichartz, R.: Lp harmonic analysis and Radon transforms on the Heisenberg group. J. Funct. An. 96, 350–406 (1991). https://doi.org/10.1016/0022-1236(91)90066-E

    Article  MATH  Google Scholar 

  17. Thangavelu, S.: Harmonic analysis on the Heisenberg group, progress in mathematics. Birkhauser, Basel (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Vidal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, I.E., Subils, M. & Vidal, R.E. Explicit fundamental solution for the operator \(L+\alpha |T|\) on the Gelfand pair \((\mathbb {H}_{n},U(n))\).. J. Pseudo-Differ. Oper. Appl. 12, 6 (2021). https://doi.org/10.1007/s11868-021-00375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-021-00375-1

Keywords

Mathematics Subject Classification

Navigation