Skip to main content
Log in

On modified \(\mathcal {Z}\)-contractions and an iterative scheme for solving nonlinear matrix equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, we introduce the notion of a \(\mathcal {Z}_\mathfrak {R}\)-contraction mapping, where \(\mathfrak {R}\) is an binary relation on its domain, which improves upon the idea of Khojasteh et al. (Filomat 29:1189–1194, 2015). We establish some fixed point results for \(\mathcal {Z}_\mathfrak {R}\)-contraction mappings in complete metric spaces endowed with a transitive relation and also give two illustrative examples. Moreover, we show that N-th order fixed point theorems are derived from our main results. As an application, we apply our main result to study a class of nonlinear matrix equation. Finally, as numerical experiments, we approximate the definite solution of a nonlinear matrix equation using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(\mathcal {G}\) is order preserving if \(A,B \in H(n)\) with \(A \preceq B\) implies that \(\mathcal {G}(A) \preceq \mathcal {G}(B)\).

References

  1. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-El-Mechaiekh, H.: The Ran–Reurings fixed point theorem without partial order: a simple proof. J. Fixed Point Theory Appl. 16, 373–383 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nieto, J.J., Rodŕguez-opez, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)

  4. Nieto, J.J., Rodŕguez-opez, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205–2212 (2007)

  5. Turinici, M.: Ran–Reurings fixed point results in ordered metric spaces. Libertas Math. 31, 49–55 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Turinici, M.: Nieto–Lopez theorems in ordered metric spaces. Math. Stud. 81, 219–229 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Alam, A., Imdad, M.: Relation-theoretic contraction principle. Fixed Point Theory Appl. 17(4), 693–702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Samet, B., Turinici, M.: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13(2), 82–97 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Guo, D., Lakshmikantham, V.: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11, 623–632 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhaskar, T.G., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Asgari, M.S., Mousavi, B.: Coupled fixed point theorems with respect to binary relations in metric spaces. J. Nonlinear Sci. Appl. 8, 153–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Samet, B., Vetro, C.: Coupled fixed point, \(f\) -invariant set and fixed point of \(N\)-order. Ann. Funct. Anal. 1(2), 46–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakshmikantham, V., Ćirić, L.: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. TMA 70, 4341–4349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luong, N.V., Thuan, N.X.: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74, 983–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berinde, V., Borcut, M.: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 74, 4889–4897 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aydi, H., Karapýnar, E., Yüce, İ.Ş.: Quadruple fixed point theorems in partially ordered metric spaces depending on another function. ISRN Appl. Math. Article ID 539125 (2012). https://doi.org/10.5402/2012/539125

  17. Rus, M.-D.: The fixed point problem for systems of coordinate-wise uniformly monotone operators and applications. Mediterr. J. Math. 11, 109–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rad, G.Soleimani, Shukla, S., Rahimi, H.: Some relations between \(n\)-tuple fixed point and fixed point results. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Matematicas 109(2), 471–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Su, Y., Petrusel, A., Yao, J.-C.: Multivariate fixed point theorems for contractions and nonexpansive mappings with applications. Fixed Point Theory Appl. 2016, 9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berinde, V.: On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 19(1), 7–22 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, W.-S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73(5), 1439–1446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matkowski, J.: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62, 344–348 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reich, S.: Kannan’s fixed point theorem. Bollettino della Unione Matematica Italiana 4(4), 1–11 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136(5), 1861–1869 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47(4), 2683–2693 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khojasteha, F., Shuklab, S., Radenović, S.: A new approach to the study of fixed point theory for simulation functions. Filomat 29(6), 1189–1194 (2015)

    Article  MathSciNet  Google Scholar 

  31. Lipschutz, S.: Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  32. Kolman, B., Busby, R.C., Ross, S.: Discrete Mathematical Structures, 3rd edn. PHI Pvt. Ltd., New Delhi (2000)

    Google Scholar 

  33. Sawangsup, K., Sintunavarat, W., de Hierro, A.F.R.L.: J., Fixed point theorems for \(F_\mathfrak{R}\)-contractions with applications to solution of nonlinear matrix equations. J. Fixed point Theory Appl. 19(3), 1771–1725 (2017)

    Article  MATH  Google Scholar 

  34. Berzig, M., Samet, B.: Solving systems of nonlinear matrix equations involving Lipschitzian mappings. Fixed point Theory Appl. 2011, 89 (2011)

    Article  MATH  Google Scholar 

  35. Berzig, M.: Solving a class of matrix equations via the Bhaskar–Lakshmikantham coupled fixed point theorem. Appl. Math. Lett. 25, 1638–1643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Long, J.H., Hu, X.Y., Zhang, L.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X + A^*x^{-1}A + B^*X^{-1}B = I\). Bull. Braz. Math. Soc. 39(3), 317–386 (2015)

    Google Scholar 

Download references

Acknowledgements

The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under Grant no. MRG5980242 for financial support during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wutiphol Sintunavarat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawangsup, K., Sintunavarat, W. On modified \(\mathcal {Z}\)-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl. 20, 80 (2018). https://doi.org/10.1007/s11784-018-0563-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0563-0

Keywords

Mathematics Subject Classification

Navigation