Skip to main content
Log in

Minimum numbers and Wecken theorems in topological coincidence theory. I

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Minimum numbers measure the obstruction to removing coincidences of two given maps (between smooth manifolds M and N of dimensions m and n, resp.). In this paper, we compare them to four distinct types of Nielsen numbers. These agree with the classical Nielsen number when m = n (e.g., in the fixed point setting where M = N and one of the maps is the identity map). However, in higher codimensions, mn > 0, their definitions and computations involve distinct aspects of differential topology and homotopy theory.

We develop tools which help us (1) to decide when a minimum number is equal to a Nielsen number (“Wecken theorem”), and (2) to determine Nielsen numbers. Here certain homotopy theoretical criteria play a central role. E.g., failures of the “Wecken condition” (cf. Definition 1.18 below) can have very interesting geometric consequences. The selfcoincidence case where the two maps are homotopic turns out to be particularly illuminating.

We give many concrete applications in special settings where M or N are spheres, spherical space forms, projective spaces, tori, Stiefel manifolds or Grassmannians. Already in the simplest examples an important role is played, e.g., by Kervaire invariants, all versions of Hopf invariants (à la James, Hilton, Ganea, . . . ) and the elements in the stable homotopy of spheres defined by invariantly framed Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Smith L.: Compact Lie groups and stable homotopy of spheres. Topology 13, 135–142 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Browder W.: The Kervaire invariant of framed manifolds and its generalization. Ann. of Math. (2) 90, 157–186 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings. In: Geometric Applications of Homotopy Theory I (Proc. Conf., Evanston, 1977), Lecture Notes in Math. 657, Springer, Berlin, 1978, 1–31.

  4. Bogatyi S.A., Gonçalves D.L., Zieschang H.: Coincidence theory: The minimizing problem. Proc. Steklov Inst. Math. 225, 45–77 (1999)

    Google Scholar 

  5. Brown R.: Wecken properties for manifolds. Contemp. Math. 152, 9–21 (1993)

    Google Scholar 

  6. R. Brown, Nielsen fixed point theory on manifolds. In: Nielsen Theory and Reidemeister Torsion (Warsaw, 1996), Banach Center Publ. 49, Polish Acad. Sci., Warsaw, 1999, 19–27.

  7. Brown R., Schirmer H.: Nielsen coincidence theory and coincidenceproducing maps for manifolds with boundary. Topology Appl. 46, 65–79 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brooks R.: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy. Pacific J. Math. 40, 45–52 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Crabb M.: The homotopy coincidence index. J. Fixed Point Theory Appl. 7, 1–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Crabb and I. James, Fibrewise Homotopy Theory. Springer Monogr. Math., Springer, London, 1998.

  11. Dold A.: The fixed point index of fibre-preserving maps. Invent. Math. 25, 281–297 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dold A., Gonçalves D.: Self-coincidence of fibre maps. Osaka J. Math. 42, 291–307 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Dax J.P.: Étude homotopique des espaces de plongements. Ann. Sci. École Norm. Sup. (4) 5, 303–377 (1972)

    MathSciNet  MATH  Google Scholar 

  14. Ganea T.: A generalization of the homology and homotopy suspension. Comment. Math. Helv. 39, 295–322 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gonçalves D.: Fixed points of S 1-fibrations. Pacific J. Math. 129, 297–306 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Gonçalves D., Koschorke U.: Nielsen coincidence theory of fibrepreserving maps and Dold’s fixed point index. Topol. Methods Nonlinear Anal. 33, 85–103 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Gonçalves D., Randall D.: Self-coincidence of maps from S q-bundles over S n to S n. Bol. Soc. Mat. Mexicana (3) 10, 181–192 (2004)

    MathSciNet  Google Scholar 

  18. Gonçalves D., Randall D.: Self-coincidence of mappings between spheres and the strong Kervaire invariant one problem. C. R. Math.Acad. Sci. Paris 342, 511–513 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Gonçalves D., Wong P.: Wecken property for roots. Proc. Amer. Math. Soc. 133, 2779–2782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Greenberg, Lectures on Algebraic Topology. W. A. Benjamin, New York, 1967.

  21. Hopf H.: Über die algebraische Anzahl von Fixpunkten. Math. Z. 29, 493–524 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hatcher A., Quinn F.: Bordism invariants of intersections of submanifolds. Trans. Amer. Math. Soc. 200, 327–344 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Hill, M. Hopkins and D. Ravenel, On the non-existence of elements of Kervaire invariant one. arXiv: 0908.37254 v2, 2010.

  24. James I.: On the suspension triad. Ann. of Math. (2) 63, 191–247 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. James I.:Products on spheres. Mathematika 6, 1–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jezierski J.: The least number of coincidence points on surfaces. J. Aust. Math. Soc. (Ser. A) 58, 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang B.: Fixed points and braids. Invent. Math. 75, 69–74 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang B.: Fixed points and braids II. Math. Ann. 272, 249–256 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang B.: Commutativity and Wecken properties for fixed points of surfaces and 3-manifolds. Topology Appl. 53, 221–228 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kervaire M.: A manifold which does not admit any differentiable structure. Comment. Math. Helv. 34, 257–270 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kervaire M., Milnor J.: Groups of homotopy spheres. I. Ann. of Math. (2) 77, 504–537 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kelly M.: Minimizing the number of fixed points for self-maps of compact surfaces. Pacific J. Math. 126, 81–123 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Knapp K.: Rank and Adams filtration of a Lie group. Topology 17, 41–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. U. Koschorke, Vector Fields and Other Vector Bundle Morphisms—A Singularity Approach. Lecture Notes in Math. 847, Springer, 1981.

  35. Koschorke U.: Selfcoincidences in higher codimensions. J. Reine Angew. Math. 576, 1–10 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Koschorke U.: Nielsen coincidence theory in arbitrary codimensions: The minimizing problem. Oberwolfach Reports 1, 2342–2344 (2004)

    Google Scholar 

  37. Koschorke U.: Nielsen coincidence theory in arbitrary codimensions. J. Reine Angew. Math. 598, 211–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. U. Koschorke , Geometric and homotopy theoretic methods in Nielsen coincidence theory. Fixed Point Theory Appl. (2006), Article ID 84093, 1–15

  39. Koschorke U.: Nonstabilized Nielsen coincidence invariants and Hopf-Ganea homomorphisms. Geom. Topol. 10, 619–666 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Koschorke U.: Selfcoincidences and roots in Nielsen theory. J. Fixed Point Theory Appl. 2, 241–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Koschorke U.: Minimizing coincidence numbers of maps into projective spaces. Geom. Topol. Monogr. 14, 373–391 (2008)

    Article  MathSciNet  Google Scholar 

  42. U. Koschorke, Some homotopy theoretical questions arising in Nielsen coincidence theory. In: Proceedings of the Postnikov Memorial Conference 2007 in Bedlewo, Banach Center Publications 85, Polish Acad. Sci. Inst. Math., Warsaw, 2009, 275–280.

  43. Koschorke U.: Reidemeister coincidence invariants of fiberwise maps. Topology Appl. 157, 1849–1858 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. U. Koschorke, Fixed points and coincidences in torus bundles. J. Topology and Analysis, to appear.

  45. U. Koschorke and D. Randall, Kervaire invariants and selfcoincidences. Oberwolfach, 2007.

  46. Klein J., Williams B.: Homotopical intersection theory. I. Geom. Topol. 11, 939–977 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lefschetz S.: Continuous transformations of manifolds. Proc. Natl. Acad. Sci. USA 9, 90–93 (1923)

    Article  Google Scholar 

  48. J. Milnor and J. Stasheff, Characteristic Classes. Ann. of Math. Stud. 76, Princeton University Press, Princeton, NJ, 1974.

  49. Nielsen J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math. 50, 189–358 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ossa E.: Lie groups as framed manifolds. Topology 21, 315–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Palais, Foundations of Global Non-linear Analysis. W. A. Benjamin, New York, 1968.

  52. Palais R.: The classification of real division algebras. Amer. Math. Monthly 75, 366–368 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  53. Paechter G.: The groups Π r (V n, m ). I. Quart. J. Math. Oxford Ser. (2) 7, 249–268 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  54. Salomonsen H.A.: Bordism and geometric dimension. Math. Scand. 32, 87–111 (1973)

    MathSciNet  MATH  Google Scholar 

  55. H. Toda, Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Stud. 49, Princeton University Press, Princeton, NJ, 1962.

  56. F Wecken, Fixpunktklassen. I, II, III. Math. Ann. 117 (1940), 659–671; 118 (1941), 216–234 and 544–577.

  57. Whitehead G.: Elements of homotopy theory. Graduate Texts in Mathematics 61. Springer, New York (1978)

    Google Scholar 

  58. Zhang X.: The least number of fixed points can be arbitrarily larger than the Nielsen number. Beijing Daxue Xuebao Ziran Kexue Ban 1986, 15–25 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Koschorke.

Additional information

Gratefully dedicated to my thesis advisor Richard S. Palais on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koschorke, U. Minimum numbers and Wecken theorems in topological coincidence theory. I. J. Fixed Point Theory Appl. 10, 3–36 (2011). https://doi.org/10.1007/s11784-011-0058-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-011-0058-8

Mathematics Subject Classification (2010)

Keywords

Navigation