Skip to main content
Log in

Bounding the sum of powers of the Laplacian eigenvalues of graphs

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

For a non-zero real number α, let s α (G) denote the sum of the αth power of the non-zero Laplacian eigenvalues of a graph G. In this paper, we establish a connection between s α (G) and the first Zagreb index in which the Hölder’s inequality plays a key role. By using this result, we present a lot of bounds of s α (G) for a connected (molecular) graph G in terms of its number of vertices (atoms) and edges (bonds). We also present other two bounds for s α (G) in terms of connectivity and chromatic number respectively, which generalize those results of Zhou and Trinajstić for the Kirchhoff index [B Zhou, N Trinajstić. A note on Kirchhoff index, Chem. Phys. Lett., 2008, 455: 120–123].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D de Caen. An upper bound on the sum of squares of degrees in a graph, Discrete Math, 1998, 185: 245–248.

    Article  MathSciNet  MATH  Google Scholar 

  2. D M Cvetković, M Doob, H Sachs. Spectra of Graphs, Academic Press: New York, 1980.

    Google Scholar 

  3. K C Das. Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J Math, 2003, 25: 31–49.

    MathSciNet  MATH  Google Scholar 

  4. I Gutman. The energy of a graph, Ber Math -Statist Sekt Forschungsz, Graz, 1978, 103: 1–22.

    Google Scholar 

  5. I Gutman. The energy of a graph: old and new results, in: A Betten, A Kohnert, R Laue, and A Wassermann, eds, Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, 196–211.

    Google Scholar 

  6. I Gutman, B Mohar. The quasi-Wiener and the Kirchhoff indices coincide, J Chem Inf Comput Sci, 1996, 36: 982–985.

    Google Scholar 

  7. I Gutman, N Trinajstić. Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons, Chem Phys Lett, 1972, 17: 535–538.

    Article  Google Scholar 

  8. I Gutman, K C Das. The first Zagreb index 30 years after, MATCH Commun Math Comput Chem, 2004, 50: 83–92.

    MathSciNet  MATH  Google Scholar 

  9. I Gutman Graphs with smallest sum of squares of vertex degrees, Kragujevac J Math, 2003, 25: 51–54.

    MathSciNet  MATH  Google Scholar 

  10. D Janežić, A Miličević, S Nikolić, N Trinajstić. Graph-Theoretical Matrices in Chemistry, University of Kragujevac, 2007.

  11. D J Klein, M Randić. Resistance distance, J Math Chem, 1993, 12: 81–95.

    Article  MathSciNet  Google Scholar 

  12. M. Lazić. On the Laplacian energy of a graph, Czechoslovak Math J, 2006, 56: 1207–1213.

    Article  MathSciNet  MATH  Google Scholar 

  13. J Liu, B Liu. A Laplacian-energy-like invariant of a graph, MATCH Commun Math Comput Chem, 2008, 59: 355–372.

    MathSciNet  MATH  Google Scholar 

  14. A Miličević, S Nikolić. On variable Zagreb indices, Croat. Chem. Acta, 2004, 77: 97–101.

    Google Scholar 

  15. B Mohar. The Laplacian spectrum of graphs, in: Y Alavi, G Chartrand, O R Oellermann, and A J Schwenk, eds, Graph Theory, Combinatorics, and Applications, vol. 2, Wiley, New York, 1991, 871–898.

    Google Scholar 

  16. B Mohar, D Babić, N Trinajstić. A novel definition of the Wiener index for trees, J Chem Inf Comput Sci, 1993, 33: 153–154.

    Google Scholar 

  17. J Palacios. Foster’s formulas via probability and the Kirchhoff index, Methodol Comput Appl Probab, 2004, 6: 381–387.

    Article  MathSciNet  Google Scholar 

  18. G X Tian, T Z Huang, B Zhou. A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl, 2009, 430: 2503–2510.

    Article  MathSciNet  MATH  Google Scholar 

  19. R Todeschini, V Consonni. Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

    Book  Google Scholar 

  20. N Trinajstić, D Babić, S. Nikolić, D Plavšić, D Amić, Z Mihalić. The Laplacian Matrix in Chemistry, J Chem Inf Comput Sci, 1994, 34: 368–376.

    Google Scholar 

  21. B Zhou, N Trinajstić. A note on Kirchhoff index, Chem. Phys. Lett., 2008, 455: 120–123.

    Article  Google Scholar 

  22. B Zhou. On sum of powers of the Laplacian eigenvalues of graphs, Linear Algebra Appl, 2008, 429: 2239–2246.

    Article  MathSciNet  MATH  Google Scholar 

  23. B Zhou. Remarks on Zagreb indices, MATCH Commun Math Comput Chem, 2007, 57: 591–596.

    MathSciNet  MATH  Google Scholar 

  24. B Zhou. On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs, MATCH Commun Math Comput Chem, 2009, 62: 611–619.

    MathSciNet  MATH  Google Scholar 

  25. B Zhou, A Ilić. On the sum of powers of Laplacian eigenvalues of bipartite graphs, Czechoslovak Math J, 2010, 60: 1161–1169.

    Article  MathSciNet  MATH  Google Scholar 

  26. B Zhou, N Trinajstić. Mathematical properties of molecular descriptors based on distances, Croat Chem Acta, 2010, 83: 227–242

    Google Scholar 

  27. H Y Zhu, D J Klein, I Lukovits. Extensions of the Wiener number, J Chem Inf Comput Sci, 1996, 36: 420–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-guo Qian.

Additional information

Supported by the National Natural Science Foundation of China (10831001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Xd., Qian, Jg. Bounding the sum of powers of the Laplacian eigenvalues of graphs. Appl. Math. J. Chin. Univ. 26, 142–150 (2011). https://doi.org/10.1007/s11766-011-2732-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-011-2732-4

MR Subject Classification

Keywords

Navigation