Skip to main content
Log in

Adaptive vascular enhancement of flap images in the second near-infrared window based on multiscale fusion and local visual saliency

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Near-infrared fluorescence imaging in the second window has emerged as a valuable tool for the non-invasive and real-time assessment of vascular information in skin flaps. Enhancing flap images to provide more accurate flap vascularization information is critical for predicting flap viability. To address the limitations of existing methods in enhancing vessel images, we propose a novel and adaptive technique for enhancing flap microvessel images. Multiple strategies can be employed to effectively enhance the visualization of small-scale vessels. Firstly, the proposed method leverages the multiscale rolling guided filter to acquire the base layer and detail layers at different scales. Furthermore, correlation coefficients are utilized to weigh and fuse the detail layers effectively. To suppress noise amplification while enhancing vascular structures, an improved adaptive gamma correction method based on local visual saliency is introduced. Meanwhile, the bilateral gamma correction is used to enhance the base layer. Finally, the enhanced base layer and detail layer are fused using the weighted fusion strategy. We conducted experiments on skin flap vessel images, retinal fundus images, finger vein images, and low-light images. Our method achieved excellent results in metrics such as NIQE, AMBE, and WPSNR, demonstrating significant advantages in preserving the structural integrity and brightness consistency of the images. The obtained results validate the potential of this method in enhancing vascular images, indicating promising prospects in the field of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Unger, M., Markfort, M., Halama, D., Chalopin, C.: Automatic detection of perforator vessels using infrared thermography in reconstructive surgery. Int. J. Comput. Assist. Radiol. Surg. (2019). https://doi.org/10.1007/s11548-018-1892-6

    Article  Google Scholar 

  2. Dassonville, O., Poissonnet, G., Chamorey, E., Vallicioni, J., Demard, F., Santini, J., Lecoq, M., Converset, S., Mahdyoun, P., Bozec, A.: Head and neck reconstruction with free flaps: a report on 213 cases. Eur. Arch. Otorhinolaryngol. (2008). https://doi.org/10.1007/s00405-007-0410-1

    Article  Google Scholar 

  3. Chen, C.M., Ashjian, P., Disa, J.J., Cordeiro, P.G., Pusic, A.L., Mehrara, B.J.: Is the use of intraoperative heparin safe? Plast. Reconstr. Surg. (2008). https://doi.org/10.1097/01.prs.0000299267.84139.2a

    Article  Google Scholar 

  4. Brands, M., Van den Bosch, S., Dieleman, F., Bergé, S., Merkx, M.: Prevention of thrombosis after microvascular tissue transfer in the head and neck a review of the literature and the state of affairs in Dutch head and neck cancer centers. Int. J. Oral Maxillofac. Surg. (2010). https://doi.org/10.1016/j.ijom.2009.11.020

    Article  Google Scholar 

  5. Schrey, A., Niemi, T., Kinnunen, I., Minn, H., Vahlberg, T., Kalliokoski, K., Suominen, E., Grénman, R., Aitasalo, K.: The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring. J. Plast. Reconstr. Aesthet. Surg. (2010). https://doi.org/10.1016/j.bjps.2008.09.029

    Article  Google Scholar 

  6. Haughey, B.H., Wilson, E., Kluwe, L., Piccirillo, J., Fredrickson, J., Sessions, D., Spector, G.: Free Flap Reconstruction of the Head and Neck: Analysis of 241 Cases. Otolaryngol. Head Neck Surg. (2001). https://doi.org/10.1067/mhn.2001.116788

    Article  Google Scholar 

  7. Fukuiwa, T., Nishimoto, K., Hayashi, T., Kurono, Y.: Venous thrombosis after microvascular free-tissue transfer in head and neck cancer reconstruction. Auris Nasus Larynx (2008). https://doi.org/10.1016/j.anl.2007.10.005

    Article  Google Scholar 

  8. Weinzweig, N., Gonzalez, M.: Free tissue failure is not an all-or-none phenomenon. Plast. Reconstr. Surg. 96(3), 648–660 (1995)

    Article  Google Scholar 

  9. Talbot, S.G., Pribaz, J.J.: First aid for failing flaps. J. Reconstr. Microsurg. (2010). https://doi.org/10.1055/s-0030-1261697

    Article  Google Scholar 

  10. Meier, J.K., Prantl, L., Müller, S., Moralis, A., Liebsch, G., Gosau, M.: Simple, fast and reliable perfusion monitoring of microvascular flaps. Clin. Hemorheol. Microcirc. (2012). https://doi.org/10.3233/CH-2011-1439

    Article  Google Scholar 

  11. Wu, Y., Suo, Y., Wang, Z., Yu, Y., Duan, S., Liu, H., Qi, B., Jian, C., Hu, X., Zhang, D.: First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.1042546

    Article  Google Scholar 

  12. Lou, H., Ji, A., Qu, C., Duan, S., Liu, H., Chen, H., Cheng, Z.: A novel NIR-II nanoprobe for precision imaging of micro-meter sized tumor metastases of multi-organs and skin flap. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137848

    Article  Google Scholar 

  13. Cao, Z., Zhang, X., Wei, Z., Song, C., Zou, H., Ran, J., Zhang, H., Xie, D., Han, S., Wang, Y., Cai, Y., Han, W.: Thrombus-targeted nano-agents for NIR-II diagnostic fluorescence imaging-guided flap thromboembolism multi-model therapy. J. Nanobiotechnol. (2022). https://doi.org/10.1186/s12951-022-01649-6

    Article  Google Scholar 

  14. Wu, Y., Yu, Y., Wang, Z., Gao, S., Zhang, D., Yu, A.: NIR-II imaging with ICG for identifying perforators, assessing flap status and predicting division timing of pedicled flaps in a porcine model. J. Biophotonics (2022). https://doi.org/10.1002/jbio.202200061

    Article  Google Scholar 

  15. Wang, Z., Yu, Y., Wu, Y., Gao, S., Hu, L., Jian, C., Qi, B., Yu, A.: Dynamically monitoring lymphatic and vascular systems in physiological and pathological conditions of a swine model via a portable NIR-II imaging system with ICG. Int. J. Medical Sci. (2022). https://doi.org/10.7150/ijms.71956

    Article  Google Scholar 

  16. Hao, Y., Ji, A., Xing, R., Zhu, W., Jiang, B., Jian, Y., Chen, H.: Capillaries segmentation of NIR-II images and its application in ischemic stroke. Comput. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2022.105742

    Article  Google Scholar 

  17. Nagata, T., Masumoto, K., Uchiyama, Y., Watanabe, Y., Azuma, R., Morimoto, Y., Katou, F.: Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography. J. Cranio Maxill. Surg. (2014). https://doi.org/10.1016/j.jcms.2014.01.040

    Article  Google Scholar 

  18. Kumar, R., Kumar Bhandari, A.: Luminosity and contrast enhancement of retinal vessel images using weighted average histogram. Biomed. Signal Process. Control (2022). https://doi.org/10.1016/j.bspc.2021.103089

    Article  Google Scholar 

  19. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Gr. gems 1994, 474–485 (1994)

    Article  Google Scholar 

  20. Alwazzan, M.J., Ismael, M.A., Ahmed, A.N.: A hybrid algorithm to enhance colour retinal fundus images using a wiener filter and CLAHE. J. Digit. Imaging (2021). https://doi.org/10.1007/s10278-021-00447-0

    Article  Google Scholar 

  21. Sule, O.O., Ezugwu, A.E.: A two-stage histogram equalization enhancement scheme for feature preservation in retinal fundus images. Biomed. Signal Process. Control (2023). https://doi.org/10.1016/j.bspc.2022.104384

    Article  Google Scholar 

  22. Aurangzeb, K., Aslam, S., Alhussein, M., Naqvi, R.A., Arsalan, M., Haider, S.I.: Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3068477

    Article  Google Scholar 

  23. Zhang, G., Lin, J., Cao, E., Pang, Y., Sun, W.: A medical endoscope image enhancement method based on improved weighted guided filtering. Mathematics (2022). https://doi.org/10.3390/math10091423

    Article  Google Scholar 

  24. Alharbi, S.S., Sazak, Ç., Nelson, C.J., Alhasson, H.F., Obara, B.: The multiscale top-hat tensor enables specific enhancement of curvilinear structures in 2D and 3D images. Methods (2020). https://doi.org/10.1016/j.ymeth.2019.05.025

    Article  Google Scholar 

  25. Cao, L., Li, H.: Detail-richest-channel based enhancement for retinal image and beyond. Biomed. Signal Process. Control (2021). https://doi.org/10.1016/j.bspc.2021.102933

    Article  Google Scholar 

  26. Yakno, M., Mohamad-Saleh, J., Ibrahim, M.Z.: Dorsal hand vein image enhancement using fusion of CLAHE and fuzzy adaptive gamma. Sensors (2021). https://doi.org/10.3390/s21196445

    Article  Google Scholar 

  27. You, Q., Wan, C., Sun, J., Shen, J., Ye, H.,Yu, Q.: Fundus Image Enhancement Method Based on CycleGAN. In: 41st annual international conference of the ieee engineering in medicine and biology society (EMBC), pp. 4500–4503. IEEE (2019)

  28. Yang, B., Zhao, H., Cao, L., Liu, H., Wang, N., Li, H.: Retinal image enhancement with artifact reduction and structure retention. Pattern Recogn. (2023). https://doi.org/10.1016/j.patcog.2022.108968

    Article  Google Scholar 

  29. Qayyum, A., Sultani, W., Shamshad, F., Tufail, R., Qadir, J.: Single-shot retinal image enhancement using untrained and pretrained neural networks priors integrated with analytical image priors. Comput. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2022.105879

    Article  Google Scholar 

  30. Zhang, Q., Shen, X., Xu, L.,Jia, J.: Rolling guidance filter. In: Computer Vision–ECCV 2014: 13th European Conference, pp. 815–830. Springer (2014)

  31. Ma, J., Zhou, Z., Wang, B., Zong, H.: Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. (2017). https://doi.org/10.1016/j.infrared.2017.02.005

    Article  Google Scholar 

  32. Kaplan, N., Erer, I.,Gulmus, N.: Remote sensing image enhancement via bilateral filtering. In: 2017 8th international conference on recent advances in space technologies (RAST), pp. 139–142. IEEE (2017)

  33. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global Contrast Based Salient Region Detection. IEEE Trans. Pattern Anal. Mach. Intell. (2015). https://doi.org/10.1109/TPAMI.2014.2345401

    Article  Google Scholar 

  34. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE conference on computer vision and pattern recognition, pp. 1597–1604. IEEE (2009)

  35. Jeong, I., Lee, C.: An optimization-based approach to gamma correction parameter estimation for low-light image enhancement. Multimed. Tools. Appl. (2021). https://doi.org/10.1007/s11042-021-10614-8

    Article  Google Scholar 

  36. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

  37. Kamoona, A.M., Patra, J.C.: A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images. Appl. Soft Comput. (2019). https://doi.org/10.1016/j.asoc.2019.105749

    Article  Google Scholar 

  38. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. (2013). https://doi.org/10.1109/TIP.2012.2226047

    Article  MathSciNet  Google Scholar 

  39. Singh, K., Kapoor, R.: Image enhancement using Exposure based Sub Image Histogram Equalization. Pattern Recognit Lett (2014). https://doi.org/10.1016/j.patrec.2013.08.024

    Article  Google Scholar 

  40. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. (1997). https://doi.org/10.1109/83.597272

    Article  Google Scholar 

  41. Qian, S., Shi, Y., Wu, H., Liu, J., Zhang, W.: An adaptive enhancement algorithm based on visual saliency for low illumination images. Appl. Intell. (2022). https://doi.org/10.1007/s10489-021-02466-4

    Article  Google Scholar 

  42. Sun, Y., Zhao, Z., Jiang, D., Tong, X., Tao, B., Jiang, G., Kong, J., Yun, J., Liu, Y., Liu, X., Zhao, G., Fang, Z.: Low-illumination image enhancement algorithm based on improved multi-scale retinex and ABC algorithm optimization. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.865820

    Article  Google Scholar 

  43. Huang, Z., Li, X., Wang, L., Fang, H., Ma, L., Shi, Y., Hong, H.: Spatially adaptive multi-scale image enhancement based on nonsubsampled contourlet transform. Infrared Phys. Technol. (2022). https://doi.org/10.1016/j.infrared.2021.104014

    Article  Google Scholar 

  44. Liu, W., Zhang, P., Lei, Y., Huang, X., Yang, J., Ng, M.: A generalized framework for edge-preserving and structure-preserving image smoothing. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2021.3097891

    Article  Google Scholar 

  45. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  46. Soong-Der, C., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. (2003). https://doi.org/10.1109/TCE.2003.1261234

    Article  Google Scholar 

  47. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  48. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  49. Asaari, M.S.M., Suandi, S.A., Rosdi, B.A.: Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics. Expert Syst. Appl. (2014). https://doi.org/10.1016/j.eswa.2013.11.033

    Article  Google Scholar 

  50. Guo, X., Li, Y., Ling, H.: LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. (2016). https://doi.org/10.1109/TIP.2016.2639450

    Article  Google Scholar 

  51. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. (2021). https://doi.org/10.1109/TIP.2021.3051462

    Article  Google Scholar 

  52. Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S.,Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1780–1789. (2020)

  53. Umirzakova, S., Ahmad, S., Khan, L.U., Whangbo, T.: Medical image super-resolution for smart healthcare applications: a comprehensive survey. Inform Fusion (2024). https://doi.org/10.1016/j.inffus.2023.102075

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 82072521.

Author information

Authors and Affiliations

Authors

Contributions

Lu Fang: Methodology, Software, Writing—original draft. Huaixuan Sheng: Investigation, Resources, Writing—original draft. Huizhu Li: Formal analysis, Resources. Shunyao Li: Formal analysis, Resources. Sijia Feng: Investigation, Resources, Data Curation. Mo Chen: Formal analysis, Resources, Visualization. Yunxia Li: Formal analysis, Resources, Data Curation. Jun Chen: Conceptualization, Supervision, Funding acquisition. Fuchun Chen: Conceptualization, Methodology.

Corresponding author

Correspondence to Fuchun Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This animal study was approved by Animal Care Committee of the Laboratory Animal from Fudan University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Sheng, H., Li, H. et al. Adaptive vascular enhancement of flap images in the second near-infrared window based on multiscale fusion and local visual saliency. SIViP 18, 5797–5810 (2024). https://doi.org/10.1007/s11760-024-03272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03272-4

Keywords

Navigation