Skip to main content

Advertisement

Log in

Leaky Integrate-and-Fire Neuron Model-Based SNN Latency Estimation Using FNS

  • Topical Collection: Low-Energy Digital Devices and Computing 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of neural modeling tools is becoming increasingly common in the exploration of human brain behavior, enabling effective simulations through event-driven methodologies. As a result, years of study and advancements in the field of neurotechnology have led to the creation of several artificial neural network approaches that mimic biological neural networks. The event-driven approach provides an effective method for mimicking large-scale spiking neural networks (SNNs), by taking advantage of the brain’s sparse processing. This paper investigates SNN employing a leaky integrate-and-fire neuron model with latency estimation through FNS. A three-layer feedforward network (FFN) is constructed, incorporating design parameters from Config Wizard. Notably, our study sheds light on the impact of synchrony within a simple FFN. Through the incorporation of biologically plausible delay effects, our model offers novel insights that complement the existing literature. Neural activity is organized in CSV format files, facilitating the reconstruction of electrophysiological-like signals. FNS enables a comprehensive exploration of interactions within and between populations of spiking neurons. In the near future, we intend to use these findings in situations where this particular class of neural networks and digital signal processing (DSP) applications can be combined to create potent nonlinear DSP techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Ponulak and A. Kasinski, Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol. Exp. 71, 409 (2011).

    Article  Google Scholar 

  2. W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659 (1997).

    Article  Google Scholar 

  3. R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Destexhe, Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Aertsen, M. Diesmann, and M.-O. Gewaltig, Propagation of synchronous spiking activity in feedforward neural networks. J. Physiol. Paris 90, 243 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. M. Diesmann, M.-O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. M.C. Van Rossum, G.G. Turrigiano, and S.B. Nelson, Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22, 1956 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. W.M. Kistler and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comput. 14, 987 (2002).

    Article  PubMed  Google Scholar 

  8. W. Maass, Paradigms for computing with spiking neurons, in Models of Neural Networks IV: Early Vision and Attention, p. 373–402 (Springer, 2002).

  9. A. Kumar, S. Rotter, and A. Aertsen, Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. G.C. Cardarilli, A. Cristini, L. Di Nunzio, M. Re, M. Salerno, and G. Susi, Spiking neural networks based on LIF with latency: simulation and synchronization effects, in Conference Record—Asilomar Conference on Signals, Systems and Computers, p. 1838–1842 (IEEE, 2013).

  11. G. Susi, A. Cristini, and M. Salerno, Path multimodality in a feedforward SNN module, using LIF with latency model. Neural Netw. World 26, 363 (2016).

    Article  Google Scholar 

  12. G. Susi, Bio-inspired temporal-decoding network topologies for the accurate recognition of spike patterns. Trans. Mach. Learn. Artif. Intell. 3, 27 (2015).

    Google Scholar 

  13. A.N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95, 1 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. P. Maršálek, C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. 94, 735 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  15. A.N. Burkitt and G.M. Clark, Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output. Neural Comput. 11, 871 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. C.E. Carr, Processing of temporal information in the brain. Annu. Rev. Neurosci. 16, 223 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Y.-X. Guo and M. Kawasaki, Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus. J. Neurosci. 17, 1761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C.E. Carr, W. Heiligenberg, and G.J. Rose, A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. J. Neurosci. 6, 107 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. G. Susi, P. Garcés, E. Paracone, A. Cristini, M. Salerno, F. Maestú, and E. Pereda, FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency. Sci. Rep. 11, 12160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Forrester, J. Crofts, S. Sotiropoulos, S. Coombes, and R. O’Dea, The role of node dynamics in shaping emergent functional connectivity patterns in the brain. Netw. Neurosci. 4(2), 467 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257 (1955).

    Article  Google Scholar 

  22. M. Salerno, G. Susi, and A. Cristini, Accurate latency characterization for very large asynchronous spiking neural networks. In BIOINFORMATICS 2011-Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, p. 116–124 (SciTePress, 2011).

  23. M. Salerno, G. Susi, A. Cristini, Y. Sanfelice, and A. D’Annessa, Spiking neural networks as continuous-time dynamical systems: fundamentals, elementary structures and simple applications. ACEEE Int. J. Inf. Technol. 3, 80 (2013).

    Google Scholar 

  24. A. Citri and R.C. Malenka, Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyut Kumar Sanki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.A., Dhanush, K.S.S., Eswar, K.A. et al. Leaky Integrate-and-Fire Neuron Model-Based SNN Latency Estimation Using FNS. J. Electron. Mater. 53, 3560–3568 (2024). https://doi.org/10.1007/s11664-024-11078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11078-w

Keywords

Navigation