Skip to main content

Advertisement

Log in

An Analytical Model for the Influence of Contact Resistance on Thermoelectric Efficiency

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An analytical model is presented that can account for both electrical and hot and cold thermal contact resistances when calculating the efficiency of a thermoelectric generator. The model is compared to a numerical model of a thermoelectric leg for 16 different thermoelectric materials, as well as to the analytical models of Ebling et al. (J Electron Mater 39:1376, 2010) and Min and Rowe (J Power Sour 38:253, 1992). The model presented here is shown to accurately calculate the efficiency for all systems and all contact resistances considered, with an average difference in efficiency between the numerical model and the analytical model of −0.07 ± 0.35pp. This makes the model more accurate than previously published models. The maximum absolute difference in efficiency between the analytical model and the numerical model is 1.14pp for all materials and all contact resistances considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Mller, J. Electron. Mater. 39, 1934 (2010)

    Article  Google Scholar 

  2. R. Bjørk, D.V. Christensen, D. Eriksen, and N. Pryds, Int. J. Therm. Sci. 85, 12 (2014)

    Article  Google Scholar 

  3. M.S. El-Genk, and H.H. Saber, Energy Convers. Manag. 44, 1069 (2003)

    Article  Google Scholar 

  4. M.S. El-Genk, H.H. Saber, and T. Caillat, AIP Conference Proceedings, vol. 699, p. 541 (2004)

  5. M.S. El-Genk, H.H. Saber, T. Caillat, and J. Sakamoto, Energy. Convers. Manag. 47, 174 (2006)

    Article  Google Scholar 

  6. J. DAngelo, E.D. Case, N. Matchanov, C.-I. Wu, T.P. Hogan, J. Barnard, C. Cauchy, T. Hendricks, and M.G. Kanatzidis, J. Electron. Mater. 40, 2051 (2011)

    Article  Google Scholar 

  7. L.T. Hung, N.V. Nong, G.J. Snyder, B. Balke, L. Han, R. Bjørk, P.H. Ngan, T.C. Holgate, S. Linderoth, and N. Pryds, Energy Technol. (2015). doi:10.1002/ente.201500176

  8. T. Sakamoto, T. Iida, Y. Honda, M. Tada, T. Sekiguchi, K. Nishio, Y. Kogo, and Y. Takanashi, J. Electron. Mater. 41, 1805 (2012)

    Article  Google Scholar 

  9. J.J. D’Angelo, E.J. Timm, F. Ren, B.D. Hall, E. Case, H. Schock, M. Kanatzidis, D.Y. Chung, and T.P. Hogan, MRS Proceedings, vol. 1044, p. 1044 (2007)

  10. F. Assion, M. Schönhoff, and U. Hilleringmann, J. Electron. Mater. 42, 1932 (2013)

    Article  Google Scholar 

  11. Y.X. Gan, and F.W. Dynys, Mater. Chem. Phys. 138, 342 (2013)

    Article  Google Scholar 

  12. F. Li, X. Huang, W. Jiang, and L. Chen, 9th European Conference on Thermoelectrics, vol. 1449, p. 458 (2012)

  13. D. Zhao, H. Geng, and L. Chen, Int. J. Appl. Ceram. Technol. 9, 733 (2012)

    Article  Google Scholar 

  14. R. Zybała, K. Wojciechowski, M. Schmidt, and R. Mania, Ceram. Mater. 62, 481 (2010)

    Google Scholar 

  15. A. Pettes, R. Melamud, S. Higuchi, and K. Goodson, Proceedings on International Conference on Thermoelectrics (IEEE), pp. 283–289 (2007)

  16. D. Ebling, K. Bartholom, M. Bartel, and M. Jgle, J. Electron. Mater. 39, 1376 (2010)

    Article  Google Scholar 

  17. B. Reddy, M. Barry, J. Li, and M.K. Chyu, J. Heat Transf. 136, 101401 (2014)

    Article  Google Scholar 

  18. R. Bjørk, J. Electron. Mater. 44, 2869 (2015)

  19. G. Min, and D.M. Rowe, J. Power Sour. 38, 253 (1992)

    Article  Google Scholar 

  20. D.M. Rowe, and G. Min, IEE Proc. Sci. Meas. Technol. 143, 351 (1996)

    Google Scholar 

  21. D.M. Rowe, Thermoelectrics Handbook—Macro to Nano (Taylor and Francis Group, LLC, Boca Raton, 2006)

    Google Scholar 

  22. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. 8, 2580 (2008)

    Article  Google Scholar 

  23. A. Muto, J. Yang, B. Poudel, Z. Ren, and G. Chen, Adv. Energy Mater. 3, 245 (2013)

    Article  Google Scholar 

  24. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008)

    Article  Google Scholar 

  25. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. Simonson, S. Poon, T. Tritt, G. Chen, and Z. Ren, Nano Lett. 11, 556 (2010)

    Article  Google Scholar 

  26. Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Adv. Mater. 23, 5674 (2011)

    Article  Google Scholar 

  27. M. Chitroub, F. Besse, and H. Scherrer, J. Alloy Compd. 460, 90 (2008)

    Article  Google Scholar 

  28. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. 11, 422 (2012)

    Article  Google Scholar 

  29. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008)

    Article  Google Scholar 

  30. C. Kim, D.H. Kim, H. Kim, and J.S. Chung, ACS Appl. Mater. Interfaces 4, 2949 (2012)

    Article  Google Scholar 

  31. M. Schwall, and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013)

    Article  Google Scholar 

  32. X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010)

    Article  Google Scholar 

  33. Q. Zhang, J. He, T. Zhu, S. Zhang, X. Zhao, and T. Tritt, Appl. Phys. Lett. 93, 102109 (2008)

    Article  Google Scholar 

  34. A.D. LaLonde, Y. Pei, and G.J. Snyder, Energy Environ. Sci. 4, 2090 (2011)

    Article  Google Scholar 

  35. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011)

    Article  Google Scholar 

  36. A.F. May, J.-P. Fleurial, and G.J. Snyder, Chem. Mater. 22, 2995 (2010)

    Article  Google Scholar 

  37. X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A. Muto, M. Tang, J. Klatsky, S.S.M. Dresselhaus, G. Chen, and Z. Ren, Appl. Phys. Lett. 93, 193121 (2008)

    Article  Google Scholar 

  38. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N.V. Nong, and N. Pryds, Phys. Status Solidi A 211, 9 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Bjørk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørk, R. An Analytical Model for the Influence of Contact Resistance on Thermoelectric Efficiency. J. Electron. Mater. 45, 1301–1308 (2016). https://doi.org/10.1007/s11664-015-4014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4014-z

Keywords

Navigation