Skip to main content
Log in

Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arora, R., Tomar, A., Singh, V.P.: Similarity solutions for strong shocks in a non-ideal gas. Math. Model. Anal. 17(3), 351–365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, R., Siddiqui, M.J., Singh, V.P.: Similarity method for imploding strong shocks in a non-ideal relaxing gas. Int. J. Non-Linear Mech. 57, 1–9 (2013)

    Article  Google Scholar 

  3. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  5. Carrus, P., Fox, P., Hass, F., Kopal, Z.: The propagation of shock waves in a stellar model with continuous density distribution. Astrophys J 113, 496–518 (1951)

    Article  MathSciNet  Google Scholar 

  6. Chauhan, A., Arora, R., Tomar, A.: Converging strong shock waves in magnetogasdynamics under isothermal condition. Ricerche di Matematica 1–17 (2020)

  7. Devi, M., Arora, R., Rahman, M.M., Siddiqui, M.J.: Converging cylindrical symmetric shock waves in a real medium with a magnetic field. Symmetry 11(9), 1177 (2019)

    Article  Google Scholar 

  8. Hydon, P.E.: Symmetry Methods for Differential Equations. A Beginner’s Guide. Cambridge University Press, London (2000)

    Book  MATH  Google Scholar 

  9. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    MATH  Google Scholar 

  10. Jena, J.: Self-similar solutions in a plasma with axial magnetic field (\(\theta \)-pinch). Meccanica 47(5), 1209–1215 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laumbach, D.D., Probstein, R.F.: Self-similar strong shocks with radiation in a decreasing exponential atmosphere. Phys. Fluids 13(5), 1178–1183 (1970)

    Article  Google Scholar 

  12. Lerche, I.: Mathematical theory of cylindrical isothermal blast waves in a magnetic field. Aust. J. Phys. 34(3), 279–302 (1981)

    Article  MathSciNet  Google Scholar 

  13. Lin, S.C.: Cylindrical shock waves produced by instantaneous energy release. J. Appl. Phys. 25(1), 54–57 (1954)

    Article  MATH  Google Scholar 

  14. Logan, J.D., Perez, J.D.J.: Similarity solutions for reactive shock hydrodynamics. SIAM J. Appl. Math. 39(3), 512–527 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nath, O., Ojha, S., Takhar, H.S.: A study of stellar point explosion in a self-gravitating radiative magnetohydrodynamic medium. Astrophys. Space Sci. 88(1), 135–145 (1991)

    Article  MATH  Google Scholar 

  16. Ovsiannikov, L.V.E.: Group Analysis of Differential Equations. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  17. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  18. Purohit, S.C.: Self-similar homothermal flow of self-gravitating case behind shock wave. J. Phys. Soc. Jpn. 36(1), 288–292 (1974)

    Article  Google Scholar 

  19. Rosenau, P., Frankenthal, S.: Equatorial propagation of axisymmetric magnetohydrodynamic shocks. Phys. Fluids 19(12), 1889–1899 (1976)

    Article  MATH  Google Scholar 

  20. Rogers, M.H.: Analytic solutions for the blast-wave problem with an atmosphere of varying density. Astrophys. J. 125, 478 (1957)

    Article  MathSciNet  Google Scholar 

  21. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  22. Sharma, H., Arora, R.: Similarity solutions of cylindrical shock waves in non-ideal magnetogasdynamics with thermal radiation. Differential Equations and Dynamical Systems 27(1–3), 169–180 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Singh, D., Arora, R.: Similarity solutions for imploding shocks in a non-ideal magnetogasdynamics. Int. J. Appl. Comput. Math. 6(2), 1–14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh, J.B.: A self-similar flow in generalized roche model with increasing energy. Astrophys. Space Sci. 88(2), 269–275 (1982)

    Article  MATH  Google Scholar 

  25. Singh, J.B., Vishwakarma, P.R.: Self-similar solutions in the theory of flare-ups in novae, I. Astrophys. Space Sci. 95(1), 99–104 (1983)

    Article  MATH  Google Scholar 

  26. Singh, K.K., Nath, B.: Self-Similar flow of a non-ideal gas with increasing energy behind a magnetogasdynamic shock wave under a gravitational field. J. Theor. Appl. Mech. 49(2), 501–513 (2011)

    Google Scholar 

  27. Sachdev, P.L., Ashraf, S.: Converging spherical and cylindrical shocks with zero temperature gradient in the rear flow field. Phys. Fluids 22(6), 1095–1102 (1971)

    MATH  Google Scholar 

  28. Vishwakarma, J.P., Singh, A.K.: A self-similar flow behind a shock wave in a gravitating or non-gravitating gas with heat conduction and radiation heat-flux. J. Astrophys. Astron. 30(1), 53–69 (2009)

    Article  Google Scholar 

  29. Zhuravskaya, T.A., Levin, V.A.: The propagation of converging and diverging shock waves under the intense heat exchange conditions. J. Appl. Math. Mech. 60(5), 745–752 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work of first author is supported by the “Ministry of Human Resource and Development”, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Arora, R. & Chauhan, A. Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field. Ricerche mat 72, 491–510 (2023). https://doi.org/10.1007/s11587-020-00529-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00529-1

Keywords

Mathematics Subject Classification

Navigation