Skip to main content
Log in

Novel Design of Grey Wolf Optimization Heuristics for High Resolution Direction of Arrival Estimation in Acoustic Plane Waves

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High resolution direction of arrival estimation for closely spaced target in low signal to noise ration (SNR) is an active research area in underwater acoustic and SONAR signal processing The resolution performance of classical/traditional subspace based algorithms including MUSIC and ESPRIT procedures degraded under sever scenarios of low signal to noise ratio (SNR), less number of samples/snapshots and short distant targets. In this work, optimization courage of swarming intelligence of grey wolf optimization (GWO) is carried out for viable DOA estimation in the challenging instances of worst underwater scenarios using a uniform linear array (ULA). The high resolution DOA for short distant emitters is achieved using less number of samples vitally with GWO by inspecting the global minima of the highly nonlinear objective model of ULA having multi local minimas. The performance is analyzed for different number of targets employing estimation accuracy, resolution certainty, variability analysis, frequency distribution of RMSE, robustness against different SNR of additive-white Gaussian measurement noise and comparative studies with MUSIC and Particle Swarm Optimization PSO with the validation strength of Cramer Rao bound reveals the valuation of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Zarifi, K., & Gershman, A. B. (2008). Generalized correlation decomposition-based blind channel estimation in DS-CDMA systems with unknown wide-sense stationary noise. IEEE Transactions on Signal Processing, 56(11), 5605.

    Article  MathSciNet  MATH  Google Scholar 

  2. Qian, C., Huang, L., Sidiropoulos, N. D., & So, H. C. (2016). Enhanced PUMA for direction-of-arrival estimation and its performance analysis. IEEE Transactions on Signal Processing, 64(16), 4127.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nikolic, M. M., Nehorai, A., & Djordjevic, A. R. (2012). Estimation of direction of arrival using multipath on array platforms. IEEE Transactions on Antennas and Propagation, 60(7), 3444.

    Article  MathSciNet  MATH  Google Scholar 

  4. Nickel, U. (2006). Overview of generalized monopulse estimation. IEEE Aerospace and Electronic Systems Magazine, 21(6), 27.

    Article  Google Scholar 

  5. Yan, F. G., Jin, M., Liu, S., & Qiao, X. L. (2014). Real-valued MUSIC for efficient direction estimation with arbitrary array geometries. IEEE Transactions on Signal Processing, 62(6), 1548.

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Huang, Y., Chen, C., Li, J., & Xu, D. (2012). Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar. IET Radar, Sonar & Navigation, 6(8), 796.

    Article  Google Scholar 

  7. Qian, C., Huang, L., & So, H. C. (2013). Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling. IEEE Signal Processing Letters, 21(2), 140.

    Article  Google Scholar 

  8. Suleiman, W., Pesavento, M., & Zoubir, A. M. (2016). Performance analysis of the decentralized eigendecomposition and ESPRIT algorithm. IEEE Transactions on Signal Processing, 64(9), 2375.

    Article  MathSciNet  MATH  Google Scholar 

  9. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67.

    Article  Google Scholar 

  10. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720.

    Article  MathSciNet  MATH  Google Scholar 

  11. Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(10), 1783.

    Article  MATH  Google Scholar 

  12. Ottersten, B., Viberg, M., Stoica, P., & Nehorai, A. (1993). Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. In Radar Array Processing (pp. 99–151). Springer.

  13. Gershman, A., Stoica, P., Pesavento, M., & Larsson, E. G. (2002). Stochastic Cramér–Rao bound for direction estimation in unknown noise fields. IEE Proceedings-Radar, Sonar and Navigation, 149(1), 2.

    Article  Google Scholar 

  14. Howland, P. (1999). Target tracking using television-based bistatic radar. IEE Proceedings-Radar, Sonar and Navigation, 146(3), 166.

    Article  Google Scholar 

  15. Colone, F., Bongioanni, C., & Lombardo, P. (2013). Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection. IEEE Aerospace and Electronic Systems Magazine, 28(4), 28.

    Article  Google Scholar 

  16. Filippini, F., Martelli, T., Colone, F., & Cardinali, R. (2018). Target DoA estimation in passive radar using non-uniform linear arrays and multiple frequency channels. In 2018 IEEE Radar Conference (RadarConf18) (pp. 1290–1295). IEEE.

  17. Pasupathy, S., & Alford, W. (1980). Range and bearing estimation in passive sonar. IEEE Transactions on Aerospace and Electronic Systems, 2, 244.

    Article  Google Scholar 

  18. Li, M., & Lu, Y. (2002). Genetic algorithm based maximum likelihood DOA estimation.

  19. Sheikh, Y. A., Zaman, F., Qureshi, I., & Atique-ur Rehman, M. (2012). Amplitude and direction of arrival estimation using differential evolution. In 2012 International Conference on Emerging Technologies (pp. 1–4). IEEE.

  20. Sharma, A., & Mathur, S. (2018). Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment. Wireless Personal Communications, 100(3), 803.

    Article  Google Scholar 

  21. Dai, C., Zhu, Y., & Chen, W. (2006). Seeker optimization algorithm. In International Conference on Computational and Information Science (pp. 167–176). Springer.

  22. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120.

    Article  Google Scholar 

  23. Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1(4), 355.

    Article  Google Scholar 

  24. Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148.

    Article  Google Scholar 

  25. Li, M., & Lu, Y. (2007). A refined genetic algorithm for accurate and reliable DOA estimation with a sensor array. Wireless Personal Communications, 43(2), 533.

    Article  Google Scholar 

  26. Shen, C. C. (2015). Maximum likelihood DOA estimation using particle swarm optimization under sensor perturbation conditions, vol. 16, no. 5 (p. 847).

  27. Shi, W., Huang, J., & Hou, Y. (2012). Fast DOA estimation algorithm for MIMO sonar based on ant colony optimization. Journal of Systems Engineering and Electronics, 23(2), 173.

    Article  Google Scholar 

  28. Zhang, Z., Lin, J., & Shi, Y. (2013). Application of artificial bee colony algorithm to maximum likelihood DOA estimation. Journal of Bionic Engineering, 10(1), 100.

    Article  Google Scholar 

  29. Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: A survey. International Journal of Bio-Inspired Computation, 3(1), 1.

    Article  Google Scholar 

  30. Črepinšek, M., Liu, S. H., & Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3), 1.

    Article  MATH  Google Scholar 

  31. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46.

    Article  Google Scholar 

  32. Zhang, Z., Long, K., Wang, J., & Dressler, F. (2013). On swarm intelligence inspired self-organized networking: Its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys & Tutorials, 16(1), 513.

    Article  Google Scholar 

  33. Leboucher, C., Chelouah, R., Siarry, P., & Le Ménec, S. (2012). A swarm intelligence method combined to evolutionary game theory applied to the resources allocation problem. International Journal of Swarm Intelligence Research (IJSIR), 3(2), 20.

    Article  Google Scholar 

  34. Ahmed, N., Wang, H., Raja, M. A. Z., Ali, W., Zaman, F., Khan, W. U., & He, Y. (2021). Performance analysis of efficient computing techniques for direction of arrival estimation of underwater multi targets. IEEE Access, 9, 33284.

    Article  Google Scholar 

  35. Ali, W., Li, Y., Ahmed, N., Ali, W., & Kashif, M. (2021). A novel application of pattern search algorithm for efficient estimation of channel state information in MIMO network. Wireless Personal Communications, 116(1), 325.

    Article  Google Scholar 

  36. Ali, W., Li, Y., Ahmed, N., Su, J., & Raja, M. A. Z. (2020). Performance analysis of Bayesian filtering and smoothing algorithms for underwater passive target tracking. Journal of Control, Automation and Electrical Systems, 31(6), 1400.

    Article  Google Scholar 

  37. Ali, W., Li, Y., Javaid, K., & Ahmed, N. (2020). Performance analysis of Gaussian optimal filtering for underwater passive target tracking. Wireless Personal Communications, 115, 61.

    Article  Google Scholar 

  38. Ali, W., Li, Y., Raja, M. A. Z., & Ahmed, N. (2020). Generalized pseudo Bayesian algorithms for tracking of multiple model underwater maneuvering target. Applied Acoustics, 166, 107345.

    Article  Google Scholar 

  39. Ali, W., Li, Y., Chen, Z., Raja, M. A. Z., Ahmed, N., & Chen, X. (2019). Application of spherical-radial cubature Bayesian filtering and smoothing in bearings only passive target tracking. Entropy, 21(11), 1088.

    Article  MathSciNet  Google Scholar 

  40. Ali, W., Li, Y., Tanoli, S. A. K., Raja, M. A. Z., Javaid, K., & Ahmed, N. (2019). Convergence analysis of unscented transform for underwater passive target tracking in noisy environment. In 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 1–6). IEEE.

  41. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks, vol. 4, (pp. 1942–1948). IEEE.

  42. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28.

    Article  Google Scholar 

  43. Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—A novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454–459). Elsevier.

  44. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46.

    Article  Google Scholar 

  45. Raja, M. A. Z., Aslam, M. S., Chaudhary, N. I., & Khan, W. U. (2018). Bio-inspired heuristics hybrid with interior-point method for active noise control systems without identification of secondary path. Frontiers of Information Technology & Electronic Engineering, 19(2), 246.

    Article  Google Scholar 

  46. Raja, M. A. Z., Ahmad, I., Khan, I., Syam, M. I., & Wazwaz, A. M. (2017). Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Frontiers of Information Technology & Electronic Engineering, 18(4), 464.

    Article  Google Scholar 

  47. Liang, Y. F., Jiang, P. F., Xu, J. N., An, W., & Wu, M. (2019). Initial alignment of compass based on genetic algorithm-particle swarm optimization. Defence Technology, 16, 257–262.

    Article  Google Scholar 

  48. Peng, Y., Cheng, J. F., & Jiang, R. X. (2019). Inversion of UEP signatures induced by ships based on PSO method. Defence Technology, 16, 172–177.

    Article  Google Scholar 

  49. Li, Y. X., & Wang, L. (2019). A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter. Defence Technology, 16, 543–554.

    Article  Google Scholar 

Download references

Funding

There are no relevant financial or non-financial competing interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huigang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Wang, H., Raja, M.A.Z. et al. Novel Design of Grey Wolf Optimization Heuristics for High Resolution Direction of Arrival Estimation in Acoustic Plane Waves. Wireless Pers Commun 128, 2507–2529 (2023). https://doi.org/10.1007/s11277-022-10057-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10057-w

Keywords

Navigation