Skip to main content
Log in

Nonlinear dynamics in double square-well potentials

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The first example of the coexistence of Josephson oscillations with a self-trapping regime is found in the context of the coherent nonlinear dynamics in a double square-well potential. We prove the simultaneous existence of symmetric, antisymmetric, and asymmetric stationary solutions of the associated Gross-Pitaevskii equation, which explains this macroscopic bistability. We illustrate and confirm the effect with numerical simulations. This property allows suggesting experiments with Bose-Einstein condensates in engineered optical lattices or with weakly coupled optical waveguide arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Jensen, IEEE J. Quant. Electronics, 18, 1580 (1982).

    Article  ADS  Google Scholar 

  2. B. D. Josephson, Phys. Lett., 1, 251 (1962).

    Article  MATH  ADS  Google Scholar 

  3. P. L. Anderson and J. W. Rowell, Phys. Rev. Lett., 10, 230 (1963).

    Article  ADS  Google Scholar 

  4. M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Phys. Rev. Lett., 95, 010402 (2005).

    Google Scholar 

  5. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys. Rev. Lett., 79, 4950 (1997).

    Article  ADS  Google Scholar 

  6. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys. Rev. A, 59, 620 (1999).

    Article  ADS  Google Scholar 

  7. L. P. Pitaevskii, Sov. Phys. JETP, 13, 451 (1961); E. P. Gross, Nuovo Cimento, 20, 454 (1961); J. Math. Phys., 4, 195 (1963).

    MathSciNet  Google Scholar 

  8. E. A. Ostrovskaya et al., Phys. Rev. A, 61, 031601 (2000).

  9. D. Ananikian and T. Bergeman, Phys. Rev. A, 73, 013604 (2006).

    Google Scholar 

  10. A. Montina and F. T. Arecchi, Phys. Rev. A, 66, 013605 (2002).

    Google Scholar 

  11. T. Kapitula and P. G. Kevrekidis, Nonlinearity, 18, 2491 (2005); P. G. Kevrekidis, Z.-G. Chen, B. A. Malomed, D. J. Frantzeskakis, and M. I. Weinstein, Phys. Lett. A, 340, 275 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. H. S. Eisenberg et al., Phys. Rev. Lett., 81, 3383 (1998).

    Article  ADS  Google Scholar 

  13. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, Phys. Rev. Lett., 86, 3296 (2001).

    Article  ADS  Google Scholar 

  14. D. Mandelik et al., Phys. Rev. Lett., 90, 053902 (2003); D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, Phys. Rev. Lett., 92, 093904 (2004).

  15. A. A. Sukhorukov, D. Neshev, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett., 92, 093901 (2004).

    Google Scholar 

  16. J. W. Fleischer et al., Phys. Rev. Lett., 90, 023902 (2003).

  17. J. W. Fleischer et al., Nature, 422, 147 (2003).

    Article  ADS  Google Scholar 

  18. A. Fratalocchi and G. Assanto, Phys. Rev. E, 73, 046603 (2006); A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. Karpierz, Opt. Express, 13, 1808 (2005).

    Google Scholar 

  19. F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Science, 293, 843 (2001).

    Article  ADS  Google Scholar 

  20. M. Anderlini et al., J. Phys. B, 39, S199 (2006).

    Article  ADS  Google Scholar 

  21. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, pSpringer, Berlin (1954).

    MATH  Google Scholar 

  22. T. Bergeman, M. G. Moore, and M. Olshanii, Phys. Rev. Lett., 91, 163201 (2003).

    Google Scholar 

  23. I. Bloch, J. Phys. B, 38, S629 (2005); O. Morsch and M. Oberthaler, Rev. Modern Phys., 78, 179 (2006).

    Article  ADS  Google Scholar 

  24. L. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B, 38, 3217 (2005); S. Wimberger, P. Schlagheck, and R. Mannella, J. Phys. B, 39, 729 (2006); P. Schlagheck and T. Paul, Phys. Rev. A, 73, 023619 (2006).

    Article  ADS  Google Scholar 

  25. R. Khomeriki, S. Ruffo, and S. Wimberger, Europhys. Lett., 77, 40005 (2007); arXiv: cond-mat/0610014v1 [cond-mat.mes-hall] (2006).

  26. A. Smerzi and A. Trombettoni, Phys. Rev. A, 68, 023613 (2003).

    Google Scholar 

  27. M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. Lett., 87, 254102 (2001); Phys. Rev. E, 65, 056618 (2002).

    Google Scholar 

  28. J. C. Slater, Phys. Rev., 87, 807 (1952).

    Article  MATH  ADS  Google Scholar 

  29. R. Khomeriki, J. Leon, and S. Ruffo, Phys. Rev. Lett., 97, 143902 (2006).

    Google Scholar 

  30. D. N. Christodoulides and R. I. Joseph, Opt. Lett., 13, 794 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khomeriki.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 2, pp. 292–303, August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomeriki, R., Leon, J., Ruffo, S. et al. Nonlinear dynamics in double square-well potentials. Theor Math Phys 152, 1122–1131 (2007). https://doi.org/10.1007/s11232-007-0096-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0096-y

Keywords

Navigation