Skip to main content
Log in

Accelerating Multiframe Blind Deconvolution via Deep Learning

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Ground-based solar-image restoration is a computationally expensive procedure that involves nonlinear optimization techniques. The presence of atmospheric turbulence produces perturbations in individual images that make it necessary to apply blind deconvolution techniques. These techniques rely on the observation of many short-exposure frames that are used to simultaneously infer the instantaneous state of the atmosphere and the unperturbed object. We have recently explored the use of machine learning to accelerate this process, with promising results. We build upon this previous work to propose several interesting improvements that lead to better models. Also, we propose a new method to accelerate the restoration based on algorithm unrolling. In this method, the image-restoration problem is solved with a gradient-descent method that is unrolled and accelerated, aided by a few small neural networks. The role of the neural networks is to correct the estimation of the solution at each iterative step. The model is trained to perform the optimization in a small fixed number of steps with a curated dataset. Our findings demonstrate that both methods significantly reduce the restoration time compared to the standard optimization procedure. Furthermore, we showcase that these models can be trained in an unsupervised manner using observed images from three different instruments. Remarkably, they also exhibit robust generalization capabilities when applied to new datasets. To foster further research and collaboration, we openly provide the trained models, along with the corresponding training and evaluation code, as well as the training dataset, to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Code Availability

The training and evaluation code is freely available in the following repository: https://github.com/aasensio/neural-MFBD. This repository also contains information on how to retrieve the training data.

Notes

  1. Karhunen–Loève (KL) modes are obtained after a suitable rotation of the Zernike basis by diagonalizing the covariance matrix under the assumption of Kolmogorov turbulence (Noll, 1976).

References

  • Asensio Ramos, A., de la Cruz Rodríguez, J., Pastor Yabar, A.: 2018, Real-time, multiframe, blind deconvolution of solar images. Astron. Astrophys. 620, A73.

    Article  Google Scholar 

  • Asensio Ramos, A., Olspert, N.: 2021, Learning to do multiframe wavefront sensing unsupervised: applications to blind deconvolution. Astron. Astrophys. 646, A100.

    Article  ADS  Google Scholar 

  • de la Cruz Rodríguez, J., Rouppe van der Voort, L., Socas-Navarro, H., van Noort, M.: 2013, Physical properties of a sunspot chromosphere with umbral flashes. Astron. Astrophys. 556, A115.

    Article  Google Scholar 

  • Denis, L., Thiébaut, É., Soulez, F., Becker, J.-M., Mourya, R.: 2015, Fast approximations of shift-variant blur. Int. J. Comput. Vis. 115, 253.

    Article  MathSciNet  MATH  Google Scholar 

  • Denker, C.J., Verma, M., Wiśniewska, A., Kamlah, R., Kontogiannis, I., Dineva, E., Rendtel, J., Bauer, S.-M., Dionies, M., Önel, H., Woche, M., Kuckein, C., Seelemann, T., Pal, P.S.: 2023, Improved high-resolution fast imager. J. Astron. Telesc. Instrum. Syst. 9, 015001.

    Article  ADS  Google Scholar 

  • Gonsalves, R.A., Chidlaw, R.: 1979, Wavefront sensing by phase retrieval. In: Tescher, A.G. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 207, 32.

    Google Scholar 

  • Gregor, K., LeCun, Y.: 2010, Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, Omnipress, Madison, 399.

    Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2015, Deep residual learning for image recognition. CoRR. arXiv.

  • Hendrycks, D., Gimpel, K.: 2016, Gaussian Error Linear Units (GELUs). arXiv:e-prints. arXiv.

  • Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.: 2010, Efficient filter flow for space-variant multiframe blind deconvolution. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 607. DOI.

    Chapter  Google Scholar 

  • Kingma, D.P., Ba, J.: 2014, Adam: a method for stochastic optimization. arXiv e-prints. arXiv.

  • Kleint, L., Berkefeld, T., Esteves, M., Sonner, T., Volkmer, R., Gerber, K., Krämer, F., Grassin, O., Berdyugina, S.: 2020, GREGOR: optics redesign and updates from 2018 – 2020. Astron. Astrophys. 641, A27.

    Article  ADS  Google Scholar 

  • Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools - a data reduction pipeline for the GREGOR Fabry-Pérot Interferometer and the High-resolution Fast Imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere 327, 20. DOI.

    Chapter  Google Scholar 

  • Labeyrie, A.: 1970, Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85.

    ADS  Google Scholar 

  • Löfdahl, M.G., Scharmer, G.B.: 1994, Wavefront sensing and image restoration from focused and defocused solar images. Astron. Astrophys. 107, 243.

    ADS  Google Scholar 

  • Löfdahl, M.G., Berger, T.E., Shine, R.S., Title, A.M.: 1998, Preparation of a dual wavelength sequence of high-resolution solar photospheric images using phase diversity. Astrophys. J. 495, 965.

    Article  ADS  Google Scholar 

  • Löfdahl, M.G., Bones, P.J., Fiddy, M.A., Millane, R.P.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Image Reconstruction from Incomplete Data 4792. DOI.

    Chapter  Google Scholar 

  • Löfdahl, M.G., Hillberg, T., de la Cruz Rodríguez, J., Vissers, G., Andriienko, O., Scharmer, G.B., Haugan, S.V.H., Fredvik, T.: 2021, SSTRED: data- and metadata-processing pipeline for CHROMIS and CRISP. Astron. Astrophys. 653, A68.

    Article  Google Scholar 

  • Monga, V., Li, Y., Eldar, Y.C.: 2021, Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38, 18.

    Article  Google Scholar 

  • Nagy, J.G., O’Leary, D.P.: 1998, Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19, 1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Noll, R.J.: 1976, Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Amer. 66, 207.

    Article  ADS  Google Scholar 

  • Oscoz, A., Rebolo, R., López, R., Pérez-Garrido, A., Pérez, J.A., Hildebrandt, S., Rodríguez, L.F., Piqueras, J.J., Villó, I., González, J.M., Barrena, R., Gómez, G., Garcí a-Hernández, D.A., Montañés, P., Rosenberg, A., Cadavid, E., Calcines, A., Dí az-Sánchez, A., Kohley, R., Martín, Y., Peñate, J., Sánchez, V. (eds.): 2008, FastCam: a new lucky imaging instrument for medium-sized telescopes. SPIE Conf. Ser. 7014, 701447.

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: 2019, PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’é-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, Curran Associates, Red Hook, 8024.

    Google Scholar 

  • Paxman, R.G., Schulz, T.J., Fienup, J.R.: 1992, Joint estimation of object and aberrations by using phase diversity. J. Opt. Soc. Amer. A 9, 1072.

    Article  ADS  Google Scholar 

  • Scharmer, G.B.: 2006, Comments on the optimization of high resolution Fabry-Pérot filtergraphs. Astron. Astrophys. 447, 1111.

    Article  ADS  Google Scholar 

  • Scharmer, G.: 2017, SST/CHROMIS: a new window to the solar chromosphere. In: SOLARNET IV: The Physics of the Sun from the Interior to the Outer Atmosphere, 85.

    Google Scholar 

  • Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 4853, 341.

    Chapter  Google Scholar 

  • Scharmer, G.B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M.G., Kiselman, D., Sütterlin, P., van Noort, M., Lagg, A.: 2008, CRISP spectropolarimetric imaging of penumbral fine structure. Astrophys. J. Lett. 689, L69.

    Article  ADS  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796.

    Article  ADS  Google Scholar 

  • van Noort, M.J., Rouppe van der Voort, L.H.M.: 2008, Stokes imaging polarimetry using image restoration at the Swedish 1-m solar telescope. Astron. Astrophys. 489, 429.

    Article  ADS  Google Scholar 

  • van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity. Solar Phys. 228, 191.

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1993, Speckle imaging of solar small scale structure. I - Methods. Astron. Astrophys. 268, 374.

    ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Michiel van Noort for invaluable advice on solar-image restoration and Nigul Olspert for his work on the initial phases of this work. The authors acknowledge Sergio J. González Manrique, who participated in the GREGOR observing campaigns. The authors are also thankful to Andrea Diercke, the PI of the HiFI validation data, for allowing the use of the data. We also acknowledge Javier Trujillo Bueno for participating in the acquisition of the quiet-Sun data during our 2019 campaign at the SST. The Swedish 1-m Solar Telescope is operated on the island of La Palma by the Institute for Solar Physics of Stockholm University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The Institute for Solar Physics is supported by a grant for research infrastructures of national importance from the Swedish Research Council (registration number 2017-00625). The authors thankfully acknowledge the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Española de Supercomputación), as well as the computer resources used: the La Palma Supercomputer, located at the Instituto de Astrofísica de Canarias. The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Leibniz Institute for Solar Physics (KIS) in Freiburg with the Leibniz Institute for Astrophysics Potsdam (AIP), the Institute for Astrophysics Göttingen, and the Max Planck Institute for Solar System Research (MPS) in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias (IAC) and the Astronomical Institute of the Academy of Sciences of the Czech Republic (ASU).

Funding

AAR acknowledges financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades through project PGC2018-102108-B-I00 and FEDER funds. CK acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 895955. SEP acknowledges the funding received from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced grant agreement No. 742265).

Author information

Authors and Affiliations

Authors

Contributions

AAR proposed the two neural models, curated the training data, trained the models and analyzed the results. AAR made all figures and wrote the text. SEP observed and reduced the CRISP@SST and CHROMIS@SST data, also producing the MOMFBD restorations. CK observed and reduced the HiFI@GREGOR data, also producing the MOMFBD restorations. SEP and CK also contributed to the manuscript.

Corresponding author

Correspondence to Andrés Asensio Ramos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asensio Ramos, A., Esteban Pozuelo, S. & Kuckein, C. Accelerating Multiframe Blind Deconvolution via Deep Learning. Sol Phys 298, 91 (2023). https://doi.org/10.1007/s11207-023-02185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02185-8

Keywords

Navigation