Skip to main content
Log in

Fine Selmer groups and ideal class groups

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let K be a number field, let A be an abelian variety defined over K and let \(K_\infty /K\) be a uniform p-adic Lie extension. We compare several arithmetic invariants of Iwasawa modules of ideal class groups on the one side and fine Selmer groups of abelian varieties on the other side. If \(K_\infty \) contains sufficiently many p-power torsion points of A, then we can compare the ranks and the Iwasawa \(\mu \)-invariants of these modules over the Iwasawa algebra. In several special cases (e.g. multiple \(\mathbb {Z}_p\)-extensions), we can also prove relations between suitably generalised Iwasawa \(\lambda \)-invariants of the two types of Iwasawa modules. In the literature, two different kinds of generalised Iwasawa \(\lambda \)-invariants have been introduced for ideal class groups and Selmer groups. We define analogues of both concepts for fine Selmer groups and compare the resulting invariants. In order to obtain some of our main results, we prove new asymptotic formulas for the growth of ideal class groups and fine Selmer groups in multiple \(\mathbb {Z}_p\)-extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as the complete data are included.

Notes

  1. Actually Perbet considered, more generally, pro-p-groups which are p-valued. This includes the uniform p-groups (see [10,  p. 81]).

  2. This lemma is stated only for finite groups, but it can be generalised to pro-p groups easily.

References

  1. Babaĭcev, V.A.: On some questions in the theory of \(\Gamma \)-extensions of algebraic number fields II. Math. USSR Izv. 16, 675–685 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babaĭcev, V.A.: On the linear nature of the behavior of Iwasawa’s \(\mu \)-invariant. Math. USSR Izv. 19(1), 1–12 (1982)

    Article  Google Scholar 

  3. Coates, J.H., Howson, S.: Euler characteristics and elliptic curves II. J. Math. Soc. Japan 53(1), 175–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coates, J.H.: Fragments of the \({\rm GL}_2\) Iwasawa theory of elliptic curves without complex multiplication. In: Arithmetic Theory of Elliptic Curves (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1716, pp. 1–50. Springer, Berlin (1999)

    Chapter  Google Scholar 

  5. Coates, J.H., Sujatha, R.: Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions. Math. Ann. 331(4), 809–839 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coates, J.H., Sujatha, R.: On the \({M_{H}(G)}\)-conjecture. In: Non-abelian fundamental groups and Iwasawa theory, volume 393 of London Mathematical Society, Lecture Note Series, pp. 132–161. Cambridge University Press, Cambridge (2012)

  7. Coates, J.H., Schneider, P., Sujatha, R.: Modules over Iwasawa algebras. J. Inst. Math. Jussieu 2(1), 73–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cuoco, A.A.: Generalized Iwasawa invariants in a family. Compos. Math. 51(1), 89–103 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Cuoco, A.A., Monsky, P.: Class numbers in \({ Z}^{d}_{p}\)-extensions. Math. Ann. 255(2), 235–258 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic pro-\(p\)groups, Cambridge Studies in Advanced Mathematics, vol. 61, second edition. Cambridge University Press, Cambridge (1999)

  11. Greenberg, R.: The Iwasawa invariants of \(\Gamma \)-extensions of a fixed number field. Am. J. Math. 95, 204–214 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greenberg, R.: Galois theory for the Selmer group of an abelian variety. Compos. Math. 136(3), 255–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodearl, K.R., Warfield, R.B.: An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, vol. 61, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Harris, M.: Correction to: “\(p\)-adic representations arising from descent on abelian varieties” [Compositio Math. 39 (1979), no. 2, 177–245, MR0546966 (80j:14035)]. Compositio Math., 121(1):105–108 (2000)

  15. Hung, P.-C., Lim, M.F.: On the growth of Mordell-Weil ranks in \(p\)-adic Lie extensions. Asian J. Math. 24(4), 549–570 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Howson, S.: Euler characteristics as invariants of Iwasawa modules. Proc. Lond. Math. Soc. 85(3), 634–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwasawa, K.: On \(\Gamma \)-extensions of algebraic number fields. Bull. Am. Math. Soc. 65, 183–226 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwasawa, K.: On the \(\mu \)-invariants of \(Z_{\ell }\)-extensions. In: Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pp. 1–11 (1973)

  19. Kleine, S.: A new approach for the investigation of Iwasawa invariants. Ph.D. thesis, University of Göttingen (2015)

  20. Kleine, S.: Generalised Iwasawa invariants and the growth of class numbers. Forum Math. 33(1), 109–127 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleine, S.: On the Iwasawa invariants of non-cotorsion Selmer groups. Asian J. Math. (2022)

  22. Kleine, S., Müller, K.: Fine Selmer groups of congruent \(p\)-adic Galois representations. Can. Math, Bull (2022)

    Book  MATH  Google Scholar 

  23. Kleine, S., Matar, A., Sujatha, R.: On the \({\mathfrak{M}}_H(G)\)-property. Preprint (2022)

  24. Kubo, Y., Taguchi, Y.: A generalization of a theorem of Imai and its applications to Iwasawa theory. Math. Z. 275(3–4), 1181–1195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kundu, D.: Growth of Selmer groups and fine Selmer groups in uniform pro-\(p\)-extensions. Ann. Math. Qué. 45(2), 347–362 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kundu, D., Lim, M.F.: Control Theorems for Fine Selmer Groups. J. Théorie Nombres Bordeaux (2022)

  27. Lang, S.: Complex Multiplication. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 255. Springer, New York (1983)

    Google Scholar 

  28. Lei, A.: Estimating class numbers over metabelian extensions. Acta Arith. 180(4), 347–364 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lim, Meng Fai: Notes on the fine Selmer groups. Asian J. Math. 21(2), 337–361 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lim, M.F.: A note on asymptotic class number upper bounds in \(p\)-adic Lie extensions. Acta Math. Sin. 35(9), 1481–1490 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lim, M.F.: On the control theorem for fine Selmer groups and the growth of fine Tate-Shafarevich groups in \(\mathbb{Z}_p\)-extensions. Doc. Math. 25, 2445–2471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lim, M.F.: On the codescent of étale wild kernels in \(p\)-adic Lie-extensions. arXiv (2021)

  33. Lim, M.F., Murty, V.K.: The growth of fine Selmer groups. J. Ramanujan Math. Soc 31(1), 79–94 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Liang, D., Lim, M.: On the Iwasawa asymptotic class number formula for \(\mathbb{Z}_p^r\rtimes \mathbb{Z}_p\)-extensions. Acta Arith. 189(2), 191–208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18, 183–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC, Charleston (2006)

    MATH  Google Scholar 

  37. Monsky, P.: On \(p\)-adic power series. Math. Ann. 255(2), 217–227 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Monsky, P.: Some invariants of \({ Z}^{d}_{p}\)-extensions. Math. Ann. 255(2), 229–233 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monsky, P.: Fine estimates for the growth of \(e_n\) in \({ Z}^d_p\)-extensions. In: Algebraic Number Theory. Advanced Studies in Pure Mathematics, vol. 17, pp. 309–330. Academic Press, Boston (1989)

    Google Scholar 

  40. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  41. Ochi, Y., Venjakob, O.: On the structure of Selmer groups over \(p\)-adic Lie extensions. J. Algebraic Geom. 11(3), 547–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ochi, Y., Venjakob, O.: On the ranks of Iwasawa modules over \(p\)-adic Lie extensions. Math. Proc. Camb. Philos. Soc. 135(1), 25–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perbet, G.: Sur les invariants d’Iwasawa dans les extensions de Lie \(p\)-adiques. Algebra Number Theory 5(6), 819–848 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ray, A.: Asymptotic growth of Mordell-Weil ranks of elliptic curves in noncommutative towers. Can. Math, Bull (2022)

    Book  MATH  Google Scholar 

  45. Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. 2(88), 492–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  46. Venjakob, O.: On the structure theory of the Iwasawa algebra of a \(p\)-adic Lie group. J. Eur. Math. Soc. 4(3), 271–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Washington, L.C.: Introduction to cyclotomic fields, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  48. Wuthrich, C.: The fine Tate-Shafarevich group. Math. Proc. Camb. Philos. Soc. 142(1), 1–12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zarhin, Y.G.: Endomorphisms and torsion of abelian varieties. Duke Math. J. 54(1), 131–145 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Meng Fai Lim and Debanjana Kundu for kindly sending us a preprint of their work and answering our questions. We would also like to thank Damaris Schindler for supporting a visit of the first author in Göttingen. Part of this research was conducted while the second author was a postdoc at the University of Göttingen. Finally, we are grateful to the anonymous referee for the very quick and thorough reading of our lengthy manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Müller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second named author was supported by Antonio Lei’s NSERC Discovery Grants RGPIN-2020-04259 and RGPAS-2020-00096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleine, S., Müller, K. Fine Selmer groups and ideal class groups. Ramanujan J 61, 1213–1267 (2023). https://doi.org/10.1007/s11139-022-00619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00619-8

Keywords

Mathematics Subject Classification

Navigation