Skip to main content
Log in

Restricted distribution of quantum correlations in bilocal network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Analyzing shareability of correlations arising in any physical theory may be considered as a fruitful technique of studying the theory. Our present topic of discussion involves an analogous approach of studying quantum theory. For our purpose, we have deviated from the usual procedure of assessing monogamous nature of quantum correlations in the standard Bell-CHSH scenario. We have considered correlations arising in a quantum network involving independent sources. Precisely speaking, we have analyzed monogamy of nonbilocal correlations by deriving a relation restricting marginals. Interestingly, restrictions constraining distribution of nonbilocal correlations remain same irrespective of whether inputs of the nodal observers are kept fixed (in different bilocal networks) while studying nonbilocal nature of marginal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. Bell, J.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  5. Bancal, J.-D., Gisin, N., Liang, Y.-C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  6. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  7. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  8. Mayers, D., Yao, A.: Proceedings of the 39th IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, p. 503. Los Alamitos CA, USA (1998p)

    Google Scholar 

  9. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  10. Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    Article  ADS  Google Scholar 

  11. Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  12. Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 44, 095305 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  15. Sadhukhan, D., Roy, S.S., Rakshit, D., Sen, A., Sen, U.: Beating no-go theorems by engineering defects in quantum spin models. New J. Phys. 17, 043013 (2015)

    Article  ADS  Google Scholar 

  16. Toner, B., Verstraete, F.: Monogamy of Bell correlations and Tsirelson’s bound, arXiv:quant-ph/0611001

  17. Kurzynski, P., Paterek, T., Ramanathan, R., Laskowski, W., Kaszlikowski, D.: Correlation complementarity yields Bell monogamy relations. Phys. Rev. Lett. 106, 180402 (2011)

    Article  ADS  Google Scholar 

  18. Kay, A., Kaszlikowski, D., Ramanathan, R.: Optimal cloning and singlet monogamy. Phys. Rev. Lett. 103, 050501 (2009)

    Article  ADS  Google Scholar 

  19. de Oliveira, T.R., Saguia, A., Sarandy, M.S.: Nonviolation of Bell’s inequality in translation invariant systems. Eur. Phys. Lett. 100(6), 60004 (2013)

    Article  Google Scholar 

  20. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  21. Seevinck, M.: Classification and monogamy of three-qubit biseparable Bell correlations. Phys. Rev. A 76, 012106 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)

    Article  ADS  Google Scholar 

  24. Lee, S., Park, J.: Monogamy of entanglement and teleportation capability. Phys. Rev. A 79, 054309 (2009)

    Article  ADS  Google Scholar 

  25. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  26. Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  27. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  28. Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)

    Article  ADS  Google Scholar 

  29. Tavakoli, A., Skrzypczyk, P., Cavalcanti, D., Acín, A.: Nonlocal correlations in the star-network configuration. Phys. Rev. A 90, 062109 (2014)

    Article  ADS  Google Scholar 

  30. Mukherjee, K., Paul, B., Sarkar, D.: Correlations in n-local scenario. Quantum Inf. Process. 14, 2025 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Chaves, R.: Polynomial Bell inequalities. Phys. Rev. Lett. 116, 010402 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Rosset, D., Branciard, C., Barnea, T.J., Putz, G., Brunner, N., Gisin, N.: Nonlinear Bell inequalities tailored for quantum networks. Phys. Rev. Lett. 116, 010403 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Mukherjee, K., Paul, B., Sarkar, D.: Revealing advantage in a quantum network. Quantum Inf. Process. 15(7), 2895–2921 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Mukherjee, K., Paul, B., Sarkar, D.: Nontrilocality: exploiting nonlocality from three-particle systems. Phys. Rev. A 96, 022103 (2017)

    Article  ADS  Google Scholar 

  35. Tavakoli, A., Renou, M.O., Gisin, N., Brunner, N.: Correlations in star networks: from Bell inequalities to network inequalities. New J. Phys. 119, 073003 (2017)

    Article  MathSciNet  Google Scholar 

  36. Andreoli, F., Carvacho, G., Santodonato, L., Chaves, R., Sciarrino, F.: Maximal qubit violation of n-locality inequalities in a star-shaped quantum network. New J. Phys. 19, 113020 (2017)

    Article  ADS  Google Scholar 

  37. Gisin, N., Mei, Q., Tavakoli, A., Renou, M.O., Brunner, N.: All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Marc-Olivier R.Y., Wang, S., Boreiri, S., Beigi, N., Gisin, N.: Limits on Correlations in Networks for Quantum and No-Signaling Resources. Brunner arXiv:1901.08287 [quantph] (2019)

  39. Gisin, N., Gisin, B.: A local variable model for entanglement swapping exploiting the detection loophole. Phys. Lett. A 297, 279 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. Greenberger, D.M., Horne, M., Zeilinger, A., Z̈ukowski, M.: Bell theorem without inequalities for two particles. II. Inefficient detectors. Phys. Rev. A 78, 022111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. Aćin, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)

    Article  Google Scholar 

  42. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  43. Hammerer, K., Sorensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  44. Qin, H.H., Fei, S.M., Jost, X.L.: Trade-off relations of Bell violations among pairwise qubit systems. Phys. Rev. A 92, 062339 (2015)

    Article  ADS  Google Scholar 

  45. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  46. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  47. Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  48. Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  50. Cirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  51. Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018)

    Article  ADS  Google Scholar 

  53. Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Paul, B. & Sarkar, D. Restricted distribution of quantum correlations in bilocal network. Quantum Inf Process 18, 212 (2019). https://doi.org/10.1007/s11128-019-2328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2328-0

Keywords

Navigation