Skip to main content
Log in

Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a general problem of quantum entanglement quantified by von Neumann entropy for N-level atomic system. Time evolution of state vector of the entire system is investigated numerically under the influence of intrinsic decoherence for moving three-, four- and five-level atoms. It is seen that the phase shift estimator parameter, intrinsic decoherence and the atomic motion play very important role during the time evolution of the atomic systems. There is a monotonic relation between the atomic quantum Fisher information and entanglement in the absence of atomic motion. It is seen that the local maximum values at the revival time of both QFI and \(S_{A}\) decreases gradually during its time evolution. It decreases more rapidly in case of four- and five-level atoms as compared to the three-level atoms. A periodic behaviour of QFI is seen in the presence of atomic motion which becomes more prominent for higher-dimensional systems. However, atomic quantum Fisher information and entanglement exhibit an opposite behaviour during its time evolution in the presence of atomic motion. The evolution of the entanglement is found to be very prone to the intrinsic decoherence. Dramatic change takes place in the degree of entanglement when the intrinsic decoherence increases. Intrinsic decoherence in the atom-field interaction suppresses the nonclassical effects of the atomic systems. The entanglement and Fisher information saturate to its lower level for longer timescales in the presence of intrinsic decoherence. It leads to the sudden death of entanglement for higher values of intrinsic decoherence. However, the damping behaviour of entanglement remains independent of the system dimensions at larger timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chin, A.W., Huelga, S.F., Plenio, M.B.: Metrology in the presence of non-Markovian noise. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  2. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cramer, H.: Mathematical Methods of Statistics (PMS-9). Princeton University Press, Princeton (2016)

    Google Scholar 

  4. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta. Math. Soc 37, 81 (1945)

    MathSciNet  MATH  Google Scholar 

  5. Van Trees, H.L.: Detection, Estimation, and Modulation Theory : Part I, 1st edn. Wiley-Interscience, Hoboken (2001)

    Book  MATH  Google Scholar 

  6. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, Cambridge (1976)

    MATH  Google Scholar 

  7. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Edizioni della Normale, Pisa (2011)

    Book  MATH  Google Scholar 

  8. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  10. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hyllus, P., et al.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  12. Wang, T.-L., et al.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Salvatori, G., et al.: Quantum metrology in Lipkin–Meshkov–Glick critical systems. Phys. Rev. A 90, 022111 (2014)

    Article  ADS  Google Scholar 

  14. Fröwis, F., Dür, W.: Measures of macroscopicity for quantum spin systems. New J. Phys. 14, 093039 (2012)

    Article  Google Scholar 

  15. Fröwis, F., Sangouard, N., Gisin, N.: Linking measures for macroscopic quantum states via photon-spin mapping. Opt. Commun. 337, 2–11 (2015)

    Article  ADS  Google Scholar 

  16. Berrada, K., Abdel-Khalek, S., Obada, A.S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412–1416 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Ban, M.: Quantum Fisher information of a qubit initially correlated with a non-Markovian environment. Quantum Inf. Process. 14, 4163–4177 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Marian, P., Marian, T.A.: Quantum Fisher information on two manifolds of two-mode Gaussian states. Phys. Rev. A 93, 052330 (2016)

    Article  ADS  Google Scholar 

  19. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  20. Cummings, F.W.: Stimulated emission of radiation in a single mode. Phys. Rev. A 140, 1051 (1965)

    Article  ADS  Google Scholar 

  21. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Dynamics of entropy and nonclassicality features of the interaction between a \(\diamond \)-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and kerr nonlinearity. Commun. Theor. Phys. 62, 430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, D.P., Liao, Q.H., Ahamd, M.A., Wang, Y.Y., Liu, S.T.: Entropy squeezing of an atom with a k-photon in the Jaynes-Cummings model. Chin. Phys. B 19, 014206 (2010)

    Article  ADS  Google Scholar 

  23. Baghshahi, H.R., Tavassoly, M.K.: Entanglement, quantum statistics and squeezing of two \(\Xi \)-type three-level atoms interacting nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014)

    Article  ADS  Google Scholar 

  24. Faghihi, M.J., Tavassoly, M.K., Harouni, M.Bagheri: Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Phys. 24, 045202 (2014)

    Article  ADS  Google Scholar 

  25. Faghihi, M.J., Tavassoly, M.K., Hatami, M.: Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Phys. A 407, 100–109 (2014)

    Article  MathSciNet  Google Scholar 

  26. Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Phys. 24, 125203 (2014)

    Article  ADS  Google Scholar 

  27. Qin, X., Mao-Fa, F.: Entanglement dynamics of atoms in double Jaynes–Cummings models with Kerr medium. Commun. Theor. Phys. 54, 840 (2010)

    Article  ADS  MATH  Google Scholar 

  28. Cordero, S., Récamier, J.: Selective transition and complete revivals of a single two-level atom in the Jaynes–Cummings Hamiltonian with an additional Kerr medium. J. Phys. B At. Mol. Opt. Phys. 44, 135502 (2011)

    Article  ADS  Google Scholar 

  29. Cordero, S., Récamier, J.: Algebraic treatment of the time-dependent Jaynes–Cummings Hamiltonian including nonlinear terms. J. Phys. A 45, 385303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. de los Santos-Sánchez, O., Récamier, J.: The f-deformed Jaynes–Cummings model and its nonlinear coherent states. J. Phys. B At. Mol. Opt. Phys 45, 015502 (2012)

    Article  ADS  Google Scholar 

  31. Tavassoly, M.K., Yadollahi, F.: Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features. Int. J. Mod. Phys. B 26, 1250027 (2012)

    Article  ADS  MATH  Google Scholar 

  32. Hekmatara, H., Tavassoly, M.K.: Sub-Poissonian statistics, population inversion and entropy squeezing of two two-level atoms interacting with a single-mode binomial field: intensity-dependent coupling regime. Opt. Commun. 319, 121–127 (2014)

    Article  ADS  Google Scholar 

  33. Abdel-Aty, M., Obada, A.-S.F.: Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state. Eur. Phys. J. D 23, 155–165 (2003)

    Article  ADS  Google Scholar 

  34. Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a \(\Lambda \)-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B At. Mol. Opt. Phys. 45, 035502 (2012)

    Article  ADS  Google Scholar 

  35. Naderi, M.H.: The Jaynes–Cummings model beyond the rotating-wave approximation as an intensity-dependent model: quantum statistical and phase properties. J. Phys. A Math. Theor. 44, 055304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Joshi, A.: Two-mode two-photon Jaynes–Cummings model with atomic motion. Phys. Rev. A 58, 4662 (1998)

    Article  ADS  Google Scholar 

  37. Schlicher, R.R.: Jaynes–Cummings model with atomic motion. Opt. Commun. 70, 97–102 (1989)

    Article  ADS  Google Scholar 

  38. Han, Y., et al.: Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system. Phys. Rev. A 77, 023824 (2008)

    Article  ADS  Google Scholar 

  39. Abdel-Khalek, S., Abdel-Wahab, N.H.: Dynamics of entanglement between moving four-level atom and single mode cavity field. Int. J. Theor. Phys. 50, 562 (2011)

    Article  MATH  Google Scholar 

  40. Dermez, R., Abdel-Khalek, S.: Atomic Wehrl entropy and negativity as entanglement measures for qudit pure states in a trapped ion. J. Russ. Laser Res. 32, 287 (2011)

    Article  Google Scholar 

  41. Abdel-Khalek, S.: Fisher information due to a phase noisy laser under non-Markovian environment. Ann. Phys. 351, 952–959 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. Liang, Q., An-Min, W., Xiao-San, M.: Effect of Intrinsic decoherence of Milburn’s model on entanglement of two-qutrit states. Commun. Theor. Phys. 49, 516 (2008)

    Article  ADS  Google Scholar 

  44. Plenio, M.B., Knight, P.L.: Decoherence limits to quantum computation using trapped ions. Proc. R. Soc. Lond. A453, 2017–2041 (1997)

    Article  ADS  Google Scholar 

  45. Kuang, L.M., Chen, X., Ge, M.L.: Influence of intrinsic decoherence on nonclassical effects in the multiphoton Jaynes–Cummings model. Phys. Rev. A 52, 1857 (1995)

    Article  ADS  Google Scholar 

  46. Bužek, V., Konôpka, M.: Dynamics of open systems governed by the Milburn equation. Phys. Rev. A 58, 1735 (1998)

    Article  ADS  Google Scholar 

  47. Zidan, N.A., Aty, M.A., Obada, A.S.F.: Influence of intrinsic decoherence on entanglement degree in the atom-field coupling system. Chaos Solitons Fractals 13, 1421–1428 (2002)

    Article  ADS  MATH  Google Scholar 

  48. Xue-Qun, Y., Bin, S., Jian, Z.: Entropy squeezing in coupled field-superconducting charge qubit with intrinsic decoherence. Commun. Theor. Phys. 48, 63 (2007)

    Article  ADS  Google Scholar 

  49. Shao, B., Zou, J.: Tripartite states Bell-nonlocality sudden death with intrinsic decoherence. Phys. Lett. A 374, 1970–1974 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wootters, W.K.: Entanglement, of formation, and concurrence. Quantum. Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Berrada, K., Hassouni, Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. Eur. Phys. J. D 61, 513–521 (2011)

    Article  ADS  Google Scholar 

  52. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  53. Lu, X., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  54. Barndorff-Nielsen, O.E., Gill, R.D., Jupp, P.E.: Inference, on quantum statistical, II. J. R. Stat. Soc. B 65, 775–816 (2003)

    Article  MATH  Google Scholar 

  55. Abdel-Khalek, S.: Dynamics of a moving five-level atom interacting with cavity fields. J. Russ. Laser Res. 32, 86–93 (2011)

    Google Scholar 

  56. Abdel-Khalek, S., El-Saman, Y.S., Abdel-Aty, M.: Geometric phase of a moving three-level atom. Opt. Commun. 283, 1826–1831 (2010)

    Article  ADS  Google Scholar 

  57. Abdel-Khalek, S.: Quantum Fisher information for moving three-level atom. Quantum Inf. Process. 12, 3761 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Sargent, M., Scully, M.O., Lamb, W.E.: Laser Physics. Addison-Wesley, Reading (1974)

  59. Enaki, N.A., Ciobanu, N.: Horopter measured as a function of wavelength. J. Mod. Opt. 55, 589–598 (2008)

    Article  Google Scholar 

  60. Abdel-Khalek, S.: Quantum Fisher information flow and entanglement in pair coherent states. Opt. Quantum Electron. 46, 1055–1064 (2014)

    Article  Google Scholar 

  61. Obada, A.-S.F., Abdel-Khalek, S.: Entanglement evaluation with atomic Fisher information. Phys. A 389, 891–898 (2010)

    Article  Google Scholar 

  62. Abdel-Khalek, S., Berrada, K., Obada, A.S.F.: Quantum Fisher information for a single qubit system. Eur. Phys. J. D 66, 69 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramzan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S.J., Ramzan, M. & Khan, M.K. Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf Process 16, 142 (2017). https://doi.org/10.1007/s11128-017-1589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1589-8

Keywords

Navigation