Skip to main content
Log in

Maximal atom–photon entanglement in a double-\(\Lambda \) quantum system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The atom–photon entanglement of a dressed atom and its spontaneous emission in a double-\(\Lambda \) closed-loop atomic system is studied under multi-photon resonance condition. It is shown that even in the absence of quantum interference due to the spontaneous emission, the von Neumann entropy is phase-sensitive and it can be controlled by either intensity or relative phase of the applied fields. It is demonstrated that for the special case of Rabi frequency of the applied fields, the system is maximally entangled. Moreover, an open-loop configuration is considered, and it is shown that the degree of entanglement can be controlled by intensity of the applied fields. Furthermore, in electromagnetically induced transparency condition, the system is disentangled. Such a system can be used for quantum information processing via entanglement using optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correction code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  ADS  Google Scholar 

  7. Plenio, M.B., Vedral, V., Knight, P.L.: Quantum error correction in the presence of spontaneous emission. Phys. Rev. A 55, 67–71 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H., Legr, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  10. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  11. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  13. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Fang, M.F., Zhu, S.Y.: Entanglement between a \(\Lambda \)-type three-level atom and its spontaneous emission fields. Phys. A 369, 475–483 (2006)

    Article  Google Scholar 

  15. Sahrai, M., Noshad, H., Mahmoudi, M.: Entanglement of an atom and its spontaneous emission fields via spontaneously generated coherence. J. Sci. Islam. Repub. Iran 22, 171–176 (2011)

    Google Scholar 

  16. Abazari, M., Mortezapour, A., Mahmoudi, M., Sahrai, M.: Phase-controlled atom-photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541–1554 (2011)

    Article  ADS  MATH  Google Scholar 

  17. Mortezapour, A., Kordi, Z., Mahmoudi, M.: Phase-controlled atom-photon entanglement in a three-level \(\Lambda \) -type closed-loop atomic system. Chin. Phys. B 22, 060310 (2013)

    Article  Google Scholar 

  18. Korsunsky, E.A., Leinfellner Huss, N.A., Baluschev, S., Windholz, L.: Phase-dependent electromagnetically induced transparency. Phys. Rev. A 59, 2302–2305 (1999)

    Article  ADS  Google Scholar 

  19. Lukin, M., Hemmer, P., Scully, M.: Resonant nonlinear optics in phase-coherent media. Adv. At. Mol. Opt. Phys. 42, 347–386 (2000)

    ADS  Google Scholar 

  20. Morigi, G., Franke-Arnold, S., Oppo, G.L.: Phase-dependent interaction in a four-level atomic configuration. Phys. Rev. A 66, 053409 (2002)

    Article  ADS  Google Scholar 

  21. Merriam, A.J., Sharpe, S.J., Shverdin, M., Manuszak, D., Yin, G.Y., Harris, S.E.: Efficient nonlinear frequency conversion in an all-resonant double-\(\Lambda \) system. Phys. Rev. Lett. 84, 5308–5311 (2000)

    Article  ADS  Google Scholar 

  22. Mahmoudi, M., Evers, J.: Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Phys. Rev. A 74, 063827 (2006)

    Article  ADS  Google Scholar 

  23. Kumar, P., Kolobov, M.I.: Degenerate four-wave mixing as a source for spatially-broadband squeezed light. Opt. Commun. 104, 374–378 (1994)

    Article  ADS  Google Scholar 

  24. Glorieux, Q., Dubessy, R., Guibal, S., Guidoni, L., Likforman, J.-P., Coudreau, T., Arimondo, E.: Double- \(\Lambda \) microscopic model for entangled light generation by four-wave mixing. Phys. Rev. A 82, 033819 (2002)

    Article  ADS  Google Scholar 

  25. Camacho, R.M.: Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators. Opt. Exp. 20, 21977–21991 (2012)

    Article  ADS  Google Scholar 

  26. Pooser, R.C., Marino, A.M., Boyer, V., Jones, K.M., Lett, P.D.: Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of \({ }^{85}Rb\) and \({ }^{87}Rb\). Opt. Exp. 17, 16722–16730 (2009)

    Article  ADS  Google Scholar 

  27. Sahrai, M., Arzhang, B., Seifoory, H., Navaeipour, P.: Coherent control of quantum entropy via quantum interference in a four-level atomic system. J. Sci. Islam. Repub. Iran 24, 179–184 (2013)

    Google Scholar 

  28. Zavatta, A., Artoni, M., Viscor, D., La Rocca, G.: Sci. Rep. (2014). doi:10.1038/srep03941

  29. Jing, J., Zhou, Z., Liu, C., Qin, Z., Fang, Y., Zhou, J., Zhan, W.: Ultralow-light-level all-optical transistor in rubidium vapor. Appl. Phys. Lett. 104, 151103 (2014)

    Article  ADS  Google Scholar 

  30. Boyer, V., Marino, A.M., Pooser, R.C., Lett, P.D.: Entangled images from four-wave mixing. Science 321(5888), 544–547 (2008)

    Article  ADS  Google Scholar 

  31. Camacho, R.M., Vudyasetu, P.K., Howell, J.C.: Four-wave-mixing stopped light in hot atomic rubidium vapour. Nat. Photon. 3, 103–106 (2009)

    Article  ADS  Google Scholar 

  32. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments. Springer, Berlin (2005)

    Google Scholar 

  33. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  34. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)

    Article  ADS  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  37. Phoenix, S.J.D., Knight, P.L.: Fluctuation and entropy in models of quantum optical resonance. Ann. Phys. 186, 381–407 (1988)

    Article  ADS  MATH  Google Scholar 

  38. Loss, M., Ruskai, M.B.: Inequalities: Selecta of Elliott H. Lieb. Springer, Berlin (2002)

    Book  Google Scholar 

  39. Vogl, U., Glasser, R.T., Glorieux, Q., Clark, J.B., Corzo, N.V., Lett, P.D.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101 (2013)

    Article  ADS  Google Scholar 

  40. Celeri, L.C., Jonas, M.J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 9, 1837–1873 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Korsunsky, E.A., Kosachiov, D.V.: Phase-dependent nonlinear optics with double-\(\Lambda \) atoms. Phys. Rev. A 60, 4996–5009 (1999)

    Article  ADS  Google Scholar 

  42. Nikolai, L., O’Brien, C., Fleischhauer, M.: Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Phys. Rev. A 88, 013823 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordi, Z., Ghanbari, S. & Mahmoudi, M. Maximal atom–photon entanglement in a double-\(\Lambda \) quantum system. Quantum Inf Process 14, 1907–1918 (2015). https://doi.org/10.1007/s11128-015-0969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0969-1

Keywords

Navigation