Skip to main content
Log in

A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We study positive solutions to the two-point boundary value problem:

$$\begin{aligned} \begin{matrix} -u''=\lambda h(t) f(u)~;~(0,1) \\ u(0)=0\\ u'(1)+c(u(1))u(1)=0,\end{matrix} \end{aligned}$$

where \(\lambda >0\) is a parameter, \(h \in C^1((0,1],(0,\infty ))\) is a decreasing function, \(f \in C^1((0,\infty ),\mathbb {R}) \) is an increasing concave function such that \(\lim \limits _{s \rightarrow \infty }f(s)=\infty \), \(\lim \limits _{s \rightarrow \infty }\frac{f(s)}{s}=0\), \(\lim \limits _{s \rightarrow 0^+}f(s)=-\infty \) (infinite semipositone) and \(c \in C([0,\infty ),(0,\infty ))\) is an increasing function. For classes of such h and f, we establish the uniqueness of positive solutions for \(\lambda \gg 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Inequalities for second-order elliptic equations with applications to unbounded domains I, in A celebration of John F Nash Jr. Duke Math. J. 81(2), 467–494 (1996)

    Article  MathSciNet  Google Scholar 

  2. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  Google Scholar 

  3. Castro, A., Sankar, L., Shivaji, R.: Uniqueness of nonnegative solutions for semipositone problems on exterior domains. J. Math. Anal. Appl. 394(1), 432–437 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ko, E., Ramaswamy, M., Shivaji, R.: Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball. J. Math. Anal. Appl. 423, 399–409 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chu, K.D., Hai, D.D., Shivaji, R.: Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains. J. Math. Anal. Appl. 472(1), 510–525 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chu, K.D., Hai, D.D., Shivaji, R.: Uniqueness of positive radial solutions for a class of infinite semipositone p-Laplacian problems in a ball. Proc. Amer. Math. Soc. 148, 2059–2067 (2020)

    Article  MathSciNet  Google Scholar 

  7. Castro, A., Hassanpour, M., Shivaji, R.: Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearities. Comm. Partial Differ. Equ. 20, 1927–1936 (1995)

    Article  Google Scholar 

  8. Coclite, M.M., Palmieri, G.: On a singular nonlinear Dirichlet problem. Commun. Partial Differ. Equ. 14, 1315–1327 (1989)

    Article  MathSciNet  Google Scholar 

  9. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  Google Scholar 

  10. Dancer, E.N.: On the number of positive solutions of semilinear elliptic systems. Proc. Lond. Math. Soc. 53, 429–452 (1986)

    Article  Google Scholar 

  11. Dancer, E.N., Shi, J.: Uniqueness and nonexistence of positive solutions to semipositone problems. Bull. Lond. Math. Soc 38(6), 1033–1044 (2006)

    Article  MathSciNet  Google Scholar 

  12. Diaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris 305, 521–524 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Drabek, P., Hernandez, J.: Existence and uniqueness of positive solutions for some quasilinear elliptic problems. Nonlinear Anal. 27, 229–247 (1996)

    Article  MathSciNet  Google Scholar 

  14. Guo, Z.M., Webb, J.R.L.: Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large. Proc. Roy. Soc. Edinburgh 124(A), 189–198 (1994)

  15. Hai, D.D.: On a class of singular p-Laplacian boundary value problems. J. Math. Anal. Appl. 383(2), 619–626 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hernandez, J., Karatson, J., Simon, P.L.: Multiplicity for semilinear elliptic equations involving singular nonlinearity. Nonlinear Anal. 65, 265–283 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lee, E., Shivaji, R., Son, B.: Positive radial solutions to classes of singular problems on the exterior domain of a ball. J. Math. Anal. Appl. 434(2), 1597–1611 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hai, D.D., Shivaji, R.: Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball. J. Diff. Eqns. 266(4), 2232–2243 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lee, E., Sankar, L., Shivaji, R.: Positive solutions for infinite semipositone problems on exterior domains. Diff. Int. Eqns. 24(9–10), 861–875 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shivaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

4 Appendix

4 Appendix

Throughout this appendix, assume c satisfies \((H_3)\), and \(c(z)=c(0)~;~z<0\). First we consider the boundary value problem:

$$\begin{aligned} \begin{aligned} \left\{ \begin{matrix} -u''=\bar{h}~;~(0,1)~~~~~~~~~~~~~~~~~~~~\\ u(0)=0=u'(1)+c(u(1))u(1). \end{matrix} \right. \end{aligned} \end{aligned}$$
(A.1)

We establish:

Lemma A.1

Let \(\bar{h}\in L^1(0,1).\) Then (A.1) has a unique solution. Further, \(T:L^1(0,1)\rightarrow C[0,1]\) such that \(u=T(\bar{h})\) is the solution of (A.1), is a completely continuous operator.

Proof

By integrating we obtain

$$\begin{aligned} u'(t)=A-\int _0^t\bar{h}(s)ds~;~(0,1) \end{aligned}$$
(A.2)
$$\begin{aligned} u(t)=At-\int _0^t\left( \int _0^s\bar{h}(v)dv\right) ds~;~(0,1) \end{aligned}$$
(A.3)

where \(A\in \mathbb {R}\) is such that \(u'(1)+c(u(1))u(1)=0\), i.e., \(G(A)=0\) where

$$\begin{aligned} G(z):=z-\int _0^1\bar{h}(s)ds+c\bigg (z-\int _0^1\big (\int _0^s\bar{h}(v)dv\big )ds\bigg )\bigg (z-\int _0^1\big (\int _0^s\bar{h}(v)dv\big )ds\bigg ). \end{aligned}$$

Since \(G:\mathbb {R}\rightarrow \mathbb {R}\) is increasing and \(\lim \limits _{z \rightarrow \infty }G(z)=\infty \), \(\lim \limits _{z \rightarrow -\infty }G(z)=-\infty \), \(\exists _1\) \(A\in \mathbb {R}\) such that \(G(A)=0\). Thus (A.1) has a unique solution \(u\equiv T(\bar{h})\). Note that \(|A|\le \int _0^1|\bar{h}|ds\). (If \(z>\int _0^1|\bar{h}|ds\) then \(G(z)>0\) while if \(z<-\int _0^1|\bar{h}|ds\) then \(G(z)<0\).) Hence (A.2) and (A.3) give:

$$\begin{aligned} \begin{aligned} |u|_{C^1}&=\max (\Vert u\Vert _\infty ,\Vert u'\Vert _\infty ) \le 2\Vert \bar{h}\Vert _{L^1}. \end{aligned} \end{aligned}$$
(A.4)

So T maps bounded sets in \(L^1(0,1)\) into relatively compact subsets of C[0, 1]. It remains to show that T is continuous. Let \({\bar{h}_n}\subset L^1(0,1)\) be such that \(\bar{h}_n\rightarrow \bar{h}\) in \(L^1(0,1)\) and let \(u_n=T(\bar{h}_n)\), \(u=T( \bar{h})\). Then \(-(u''_n-u'')=\bar{h}_n-\bar{h}.\) So (A.4) gives \(|u_n-u|_{C^1}\le 2\Vert \bar{h}_n-\bar{h}\Vert _{L^1}\rightarrow 0\). Thus Lemma A.1 is proven. \(\square \)

Next, we consider the boundary value problem:

$$\begin{aligned} \begin{aligned} \left\{ \begin{matrix} -u''=g(t,u)~;~(0,1)~~~~~~~~~~~~~~\\ u(0)=0=u'(1)+c(u(1))u(1) \end{matrix} \right. \end{aligned} \end{aligned}$$
(A.5)

when c satisfies \((H_3)\) and the following hypotheses hold:

\((G_1)\):\(~~g:(0,1)\times (0,\infty )\rightarrow \mathbb {R}\) is continuous and \(\exists ~\Phi ,\Psi \in C^2(0,1)\cap C^1[0,1]\) with

\(~~~~~~~~~\Psi \le \Phi ;~(0,1)\), \(\inf \limits _{(0,1)}\frac{\Psi }{p}>0\) where \(p(t)=\min (t,1-t)\) such that

$$\begin{aligned}\begin{aligned} \begin{matrix} -\Psi ''\le g(t,\Psi )~;~(0,1)\\ \Psi (0)=0, \Psi '(1)+c(\Psi (1))\Psi (1)\le 0, \end{matrix} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \begin{matrix} -\Phi ''\ge g(t,\Phi )~;~(0,1)\\ \Phi (0)\ge 0,\Phi '(1)+c(\Phi (1))\Phi (1)\ge 0. \end{matrix} \end{aligned} \end{aligned}$$

\((G_2)\):\(~~\exists ~\Gamma \in L^1(0,1)\) such that for all \(\zeta \in [\Psi ,\Phi ]\), \(|g(t,\zeta (t))|\le \Gamma (t);~(0,1).\)

We establish:

Lemma A.2

Let \((G_1)-(G_2)\) hold. Then (A.5) has a positive solution \(u\in [\Psi ,\Phi ]~;~[0,1]\).

Proof

For \(v\in C[0,1]\) define \(u=S(v)\) to be the unique solution of:

$$\begin{aligned} \begin{aligned} \left\{ \begin{matrix} -u''=g(t,\tilde{v})~;~(0,1)~~~~~~~~~~~~~~\\ u(0)=0=u'(1)+c(u(1))u(1), \end{matrix} \right. \end{aligned} \end{aligned}$$
(A.6)

where \(\tilde{v}(s)=\min \big (\max (v(s),\Psi (s)),\Phi (s)\big ).\) Note that by \((G_2)\), \(\exists \) \(\Gamma \in L^1(0,1)\) such that \(|g(t,\tilde{v})|\le \Gamma (t))\) and so (A.6) has a unique solution by Lemma A.1. Since \(\tilde{T}:C[0,1]\rightarrow L^1(0,1)\) defined \(\tilde{T}(v)=\tilde{v}\) is continuous and \(S=T\circ \tilde{T}\) (here T is as defined in Lemma A.1), it follows that \(S:C[0,1]\rightarrow C[0,1]\) is completely continuous. Since S(C[0, 1]) is bounded, S has a fixed point u by the Schauder Fixed Point Theorem. We now claim that \(u\in [\Psi ,\Phi ]\). Suppose there exists \(t_0\in (0,1)\) such that \(u(t_0)<\Psi (t_0).\) Let \((\alpha ,\beta )\) be the largest open interval in (0, 1] containing \(t_0\) such that \(u<\Psi \) on \((\alpha ,\beta )\). Then \(u(\alpha )=\Psi (\alpha )\). If \(\beta <1\) then \(u(\beta )=\Psi (\beta )\), while if \(\beta =1\) then \(u(\beta )\le \Psi (\beta )\) and \(u'(\beta )\ge \Psi '(\beta )\) in view of the boundary conditions of u and \(\Psi \) at 1. Thus in either case we have

$$\begin{aligned} (u(\beta )-\Psi (\beta ))(u'(\beta )-\Psi '(\beta ))\le 0. \end{aligned}$$
(A.7)

Further, since \(\tilde{u}=\Psi \) on \((\alpha ,\beta )\) we have

$$\begin{aligned} -(u-\Psi )''\ge 0~;~(\alpha ,\beta ). \end{aligned}$$
(A.8)

Multiplying (A.8) by \(u-\Psi \) and integrating we obtain

$$\begin{aligned} -(u-\Psi )'(u-\Psi )\Big |_\alpha ^\beta +\int _\alpha ^\beta (u'-\Psi ')^2ds\le 0. \end{aligned}$$

Hence using (A.7), we obtain \(u'=\Psi '~;~(\alpha ,\beta )\), i.e., \(u=\Psi ~;~(\alpha ,\beta )\) (since \(u(\alpha )=\Psi (\alpha )\)), a contradiction. Hence \(u(t)\ge \Psi (t)~;~(0,1)\). Similarly, we obtain \(u(t)\le \Phi (t)~;~(0,1)\). Thus \(u\in [\Psi ,\Phi ]~;~[0,1]\) and so \(\tilde{u}=u\), i.e., u is a solution of (A.5). Hence Lemma A.2 is proven. \(\square \)

Finally, we consider (1.1) when for some \(l>0, \alpha>0, \gamma >0\) such that \(\alpha +\gamma <1\), h and f satisfy:

\((\tilde{H}_1)\):

:  \(h:(0,1]\rightarrow (0,\infty )\) is \(L^1(0,1)\) and \(\limsup \limits _{s \rightarrow 0^+}s^\gamma h(s)<\infty .\)

\((\tilde{H}_2)\):

:  \(f:(0,\infty )\rightarrow \mathbb {R}\) is \(C^1\), \(\lim \limits _{s \rightarrow \infty }f(s)=\infty \), \(\lim \limits _{s \rightarrow \infty }\frac{f(s)}{s}=0\), \(\lim \limits _{s \rightarrow 0^+}f(s)=-\infty \) and \(~~~~~~~~~\lim \limits _{s \rightarrow 0^+}s^{1+\alpha }f'(s)=l\).

We establish:

Lemma A.3

Let \((\tilde{H}_1)-(\tilde{H}_2)\) hold. Then (1.1) has a maximal positive solution for \(\lambda \gg 1\).

Proof

By Theorem 1.3 in [19], the Dirichlet boundary value problem:

$$\begin{aligned} \begin{aligned} \begin{matrix} -w''=\lambda h(t)f(w)~;~(0,1)\\ w(0)=0=w(1) \end{matrix} \end{aligned} \end{aligned}$$

has a positive solution w for \(\lambda \gg 1\). Clearly this w satisfies the role of \(\Psi \) in \((G_1)\) since \(w'(1)\le 0\). Let e be the unique positive solution of

$$\begin{aligned} \begin{aligned} \begin{matrix} -e''=h~;~ (0,1)\\ e(0)=0=e'(1)+c(0)e(1), \end{matrix} \end{aligned} \end{aligned}$$

and choose \(z(t)=M(\lambda )e(t)~;~[0,1]\) where \(M(\lambda )\gg 1\) so that

$$M(\lambda )\ge \lambda \tilde{f}(M(\lambda )\Vert e\Vert _\infty )$$

where \(\tilde{f}(s)=\max \limits _{(0,s]}f(t)\) (which is possible since \(\lim \limits _{s \rightarrow \infty }\frac{f(s)}{s}=0\)). Then

$$-z''=M(\lambda )h(t)\ge \lambda h(t) \tilde{f}(M(\lambda )\Vert e\Vert _\infty )\ge \lambda h(t) \tilde{f}(M(\lambda )e(t))\ge \lambda h(t)f(z);~(0,1).$$

Also \(z(0)=0\) and

$$z'(1)+c(z(1))z(1)\ge M(\lambda )[e'(1)+c(0)e(1)]=0$$

since c is increasing. Now choose \(M(\lambda )\gg 1\) so that \(z\ge \Psi (=w)\). Then z satisfies the role of \(\Phi \) in \((G_1)\) and hence \((G_1)\) hold. Also, for \(\zeta \in [\Psi ,\Phi ]\), \(\exists ~C>0\) such that

$$\begin{aligned} \begin{aligned} |g(t,\zeta )|&=\lambda h(t)|f(\zeta )|\le \lambda \frac{Ch(t)}{\zeta ^\alpha }\\&\le \lambda \frac{Ch(t)}{\Psi ^\alpha }\equiv \Gamma . \end{aligned} \end{aligned}$$

Note that \(\Gamma \in L^1(0,1)\) since \(\inf \limits _{(0,1)}\frac{\Psi }{p}>0\) and \(\limsup \limits _{s\rightarrow 0^+}s^\gamma h(s)<\infty \). So \((G_2)\) holds and by Lemma A.2, (1.1) has a positive solution for \(\lambda \gg 1\). To show the existence of a maximal solution, let u be a positive solution of (1.1). Then

$$\begin{aligned} \begin{aligned} -u''=\lambda h(t)f(u)\le \lambda h(t)\tilde{f}(u)\le \lambda h(t)\tilde{f}\left( \Vert u\Vert _\infty \right) \\ u(0) = 0, u'(1)+c(0)u(1)\le 0.~~~~~~~~~~~~~ \end{aligned} \end{aligned}$$

This implies

$$u(t)\le \lambda \tilde{f}(\Vert u\Vert _\infty )e(t).$$

Since \(\lim \limits _{s\rightarrow \infty }\frac{f(s)}{s}=0=\lim \limits _{s\rightarrow \infty }\frac{\tilde{f}(s)}{s}\) , \(\exists ~c_\lambda >0\) such that

$$\Vert u\Vert _\infty \le c_\lambda ,$$

and hence

$$u(t)\le \lambda \tilde{f}(c_\lambda )e(t).$$

This implies u is bounded by a supersolution of the form \(M(\lambda ) e(t)\) for \(M(\lambda )\gg 1\), and the existence of the maximal positive solution follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, D.D., Muthunayake, A. & Shivaji, R. A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions. Positivity 25, 1357–1371 (2021). https://doi.org/10.1007/s11117-021-00820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-021-00820-x

Keywords

Mathematics Subject Classification

Navigation