Skip to main content
Log in

Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose to design control for uncertain underactuated mechanical systems. The underactuated mechanical system is to follow prescribed holonomic or nonholonomic constraints. The uncertainty in the system does not in general fall within the range space of the input matrix, which is a major obstacle for control design. To resolve this difficulty, we decompose the uncertainty into matched uncertainty and mismatched uncertainty in a unique manner using the geometric structural characteristics of the system. A control scheme is designed to guarantee uniform boundedness and uniform ultimate boundedness of a constraint-following performance measure. The control is based solely on the matched uncertainty. The mismatched uncertainty turns out to be disappeared, as far as the performance analysis is concerned, since it is orthogonal to the geometric space of interest. For demonstrations, a vehicle/inverted pendulum platform is selected. We charge the system to follow either holonomic or nonholonomic constraint. The simulation shows the system performance, in following the prescribed constraint, is superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Panagou, D., Kyriakopoulos, K.J.: Viability control for a class of underactuated systems. Automatica 49(1), 1729 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Seifried, R.: Dynamics of Underactuated Multibody Systems. Springer, Waterloo (2014)

    Book  MATH  Google Scholar 

  3. Oriolo, G., Nakamura, Y.: Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, December 11–13 (1991)

  4. Spong, M.W.: Underactuated mechanical systems. Contr. Probl. Robotics Autom. 135–150 (1998)

  5. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47(8), 1218–1233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, G., Lu, Z.: Nonlinear dynamic analysis of planar flexible underactuated manipulators. Chin. J. Aeronaut. 18(1), 78–82 (2005)

    Article  Google Scholar 

  7. Oryschuk, P., Salerno, A., Al-Husseini, A.M., Angeles, J.: Experimental validation of an underactuated two-wheeled mobile robot. IEEE/ASME Trans. Mechatron. 14(2), 252–257 (2009)

    Article  Google Scholar 

  8. Cui, M., Liu, W., Liu, H., Jiang, H., Wang, Z.: Extended state observer-based adaptive sliding mode control of differential driving mobile robot with uncertainties. Nonlinear Dyn. 83(1), 667683 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chen, M., Jiang, B., Cui, R.: Actuator fault-tolerant control of ocean surface vessels with input saturation. Int. J. Robust Nonlinear Contr. 26(3), 542564 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Temel, T., Ashrafiuon, H.: Sliding-mode speed controller for tracking of underactuated surface vessels with extended Kalman filter. Electron. Lett. 51(6), 467469 (2015)

    Article  Google Scholar 

  11. Woods, S.A., Bauer, R.J., Seto, M.L.: Automated ballast tank control system for autonomous underwater vehicles. IEEE J. Ocean. Eng. 37(4), 727–739 (2012)

    Article  Google Scholar 

  12. Gui, H., Vukovich, G.: Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques. Adv. Space Res. 56, 2495–2507 (2015)

    Article  Google Scholar 

  13. Tsiotras, P., Luo, J.: Reduced effort control laws for underactuated rigid spacecraft. J. Guid. Control Dyn. 20(6) (1997)

  14. Tsiotras, P., Luo, J.: Control of underactuated spacecraft with bounded inputs. Automatica 36, 1153–1169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)

    Article  Google Scholar 

  16. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, J.X., Guo, Z.Q., Lee, T.H.: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Trans. Ind. Electron. 61(7), 36713681 (2014)

    Article  Google Scholar 

  18. Riachy, S., Orlov, Y., Floquet, T., Santiesteban, R., Richard, J.P.: Second-order sliding mode control of underactuated mechanical systems uppercasei: local stabilization with application to an inverted pendulum. Int. J. Robust Nonlinear Control 18, 529–543 (2008)

    Article  MATH  Google Scholar 

  19. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Math. Phys. Sci. 439(1906), 407��410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Franklin Inst. 347, 69–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, F., Han, J., Chen, Y.H., Xia, L.: A novel robust constraint force servo control for under-actuated manipulator systems: fuzzy and optimal. Asian J. Control 20(5), 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  23. Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81(1–2), 845–866 (2015)

    Article  MathSciNet  Google Scholar 

  24. Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closedform results. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann Press, London (1965)

    MATH  Google Scholar 

  26. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

    Book  MATH  Google Scholar 

  27. Chen, Y.H.: Second order constraints for equations of motion of constrained systems. IEEE/ASME Trans. Mechatron. 3(3), 240–248 (1998)

    Article  MathSciNet  Google Scholar 

  28. Noble, B., Daniel, J.W.: Applied Linear Algebra, 2nd edn. Prentice-Hall, Upper Saddle River (1977)

    MATH  Google Scholar 

  29. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  30. Corless, M.J., leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Contr. 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The research is supported by the China Scholarship Council (No. 201606690017). This research is also supported by the National Natural Science Foundation of China (No. 51505116) and the army aviation equipment “13th Five-Year” special research project (No. 30103090201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Chen, YH., Zhao, H. et al. Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared. Nonlinear Dyn 95, 2765–2782 (2019). https://doi.org/10.1007/s11071-018-4721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4721-0

Keywords

Navigation