Skip to main content
Log in

Analysis on global and chaotic dynamics of nonlinear wave equations for truss core sandwich plate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the study on the chaotic wave and chaotic dynamics of the nonlinear wave equations for a simply supported truss core sandwich plate combined with the transverse and in-plane excitations. Based on the governing equation of motion for the simply supported sandwich plate with truss core, the reductive perturbation method is used to simplify the partial differential equation. According to the exact solution of the unperturbed equation, two different kinds of the topological structures are derived, which one structure is the resonant torus and another structure is the heteroclinic orbit. The characteristic of the singular points in the neighborhood of the resonant torus for the nonlinear wave equation is investigated. It is found that there exists the homoclinic orbit on the unperturbed slow manifold. The saddle-focus type of the singular point appears when the homoclinic orbit is broken under the perturbation. Additionally, the saddle-focus type of the singular point occurs when the resonant torus on the fast manifold is broken under the perturbation. It is known that the dynamic characteristics are well consistent on the fast and slow manifolds under the condition of the perturbation. The Melnikov method, which is called the first measure, is applied to study the persistence of the heteroclinic orbit in the perturbed equation. The geometric analysis, which is named the second measure, is used to guarantee that the heteroclinic orbit on the fast manifold comes back to the stable manifold of the saddle on the slow manifold under the perturbation. The theoretical analysis suggests that there is the chaos for the Smale horseshoe sense in the truss core sandwich plate. Numerical simulations are performed to further verify the existence of the chaotic wave and chaotic motions in the nonlinear wave equation. The damping coefficient is considered as the controlling parameter to study the effect on the propagation property of the nonlinear wave in the sandwich plate with truss core. The numerical results confirm the validity of the theoretical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater Sci. 46, 309–327 (2001)

    Article  Google Scholar 

  2. Wallach, J.C., Gibson, L.J.: Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196 (2001)

    Article  Google Scholar 

  3. Hyun, S., Karlsson, A.M., Torquato, S., Evans, A.G.: Simulated properties of Kagome and tetragonal truss core panels. Int. J. Solids Struct. 40, 6989–6998 (2003)

    Article  MathSciNet  Google Scholar 

  4. Lim, J.H., Kang, K.J.: Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. Int. J. Solids Struct. 43, 5228–5246 (2006)

    Article  Google Scholar 

  5. Du, S.Y.: Advance composite materials and aerospace engineering. Acta Mat. Compos. Sin. 24, 1–12 (2007)

    Google Scholar 

  6. Nilsson, E., Nilsson, A.C.: Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J. Sound Vib. 251, 409–430 (2002)

    Article  Google Scholar 

  7. Yu, S.D., Cleghorn, W.L.: Free flexural vibration analysis of symmetric honeycomb panels. J. Sound Vib. 284, 189–204 (2005)

    Article  Google Scholar 

  8. Liu, J., Cheng, Y.S., Li, R.F., Au, F.T.K.: A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores. Int. J. Struct. Stab. Dyn. 10, 127–151 (2010)

    Article  MathSciNet  Google Scholar 

  9. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. B Eng. 43, 1489–1499 (2012)

    Article  Google Scholar 

  10. Upadhyay, A.K., Shukla, K.K.: Non-linear static and dynamic analysis of skew sandwich plates. Compos. Struct. 105, 141–148 (2013)

    Article  Google Scholar 

  11. Sahoo, R., Singh, B.N.: A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 117, 316–332 (2014)

    Article  Google Scholar 

  12. Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y., Lancon, P.: Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. Int. J. Mech. Sci. 87, 118–136 (2014)

    Article  Google Scholar 

  13. Mahmoudkhani, S., Haddadpour, H., Navazi, H.M.: The effects of nonlinearities on the vibration of viscoelastic sandwich plates. Int. J. Nonlinear Mech. 62, 41–57 (2014)

    Article  Google Scholar 

  14. Amabili, M., Farhadi, S.: Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. J. Sound Vib. 320, 649–667 (2009)

    Article  Google Scholar 

  15. Alijani, F., Bakhtiari-Nejad, F., Amabili, M.: Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn. 66, 251–270 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hao, Y.X., Zhang, W., Yang, J.: Analysis on nonlinear oscillations of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. B Eng. 42, 402–413 (2011)

    Article  Google Scholar 

  17. Hao, Y.X., Zhang, W., Yang, J., Li, S.Y.: Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermalmechanical loads. J. Mech. Sci. Technol. 25, 1637–1646 (2011)

    Article  Google Scholar 

  18. Chen, J.E., Zhang, W., Guo, X.Y., Sun, M.: Theoretical and experimental studies on nonlinear oscillations of symmetric cross-ply composite laminated plates. Nonlinear Dyn. 73, 1697–714 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhang, W., Lu, S.F., Yang, X.D.: Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate. Nonlinear Dyn. 76, 69–93 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhao, M.H., Zhang, W.: Nonlinear dynamics of composite laminated cantilever rectangular plate subject to third-order piston aerodynamics. Acta Mech. 225, 1985–2004 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 67–386 (2014)

    Google Scholar 

  22. Chen, J.E., Zhang, W., Liu, J., Sun, M.: Dynamic properties of truss core sandwich plate with tetrahedral core. Compos. Struct. 134, 869–882 (2015)

    Article  Google Scholar 

  23. Chen, J.E., Zhang, W., Sun, M., Yao, M.H., Liu, J.: Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance. J. Mech. Sci. Technol. 30, 4133–4142 (2016)

    Article  Google Scholar 

  24. Li, Y., McLaughlin, D.W.: Morse and Melnikov functions for NLS PDEs. Commun. Math. Phys. 162, 175–214 (1994)

    Article  MathSciNet  Google Scholar 

  25. McLaughlin, D.W., Overman, E.A.: Whiskered tori for integrable PDEs: chaotic behavior in near integrable pde’s. In: Surveys in Applied Mathematics. Surveys Applied Mathematics, vol. l, pp. 83–203. Plenum, New York (1995)

    Chapter  Google Scholar 

  26. Li, Y., McLaughlin, D.W., Shatah, J., Wiggins, S.: Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun. Pure Appl. Math. 49, 1175–1255 (1996)

    Article  Google Scholar 

  27. McLaughlin, D.W., Shatah, J.: Homoclinic orbits for PDE’s. Recent advances in partial differential equations, Venice, 1996. In: Proceedings of Symposia in Applied Mathematics, vol. 54, pp. 281–299. American Mathematical Society, Providence (1998)

  28. Holmes, P., Marsden, J.: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Ration. Mech. Anal. 76, 135–165 (1981)

    Article  MathSciNet  Google Scholar 

  29. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  30. Li, Y., McLaughlin, D.W.: Homoclinic orbits and chaos in discretized perturbed NLS systems: part I, Homoclinic orbits. J. Nonlinear Sci. 7, 211–269 (1997)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Wiggins, S.: Homoclinic orbits and chaos in discretized perturbed NLS systems: part II, symbolic dynamics. J. Nonlinear Sci. 7, 315–370 (1997)

    Article  MathSciNet  Google Scholar 

  32. Calini, A., Ercolani, N.M., Mclaughlin, D.W., Schober, C.M.: Melnikov analysis of numerically induced chaos in the nonlinear Schrödinger equation. Physica D 89, 227–260 (1996)

    Article  MathSciNet  Google Scholar 

  33. Rothos, V.M., Bountis, T.C.: The dynamics of coupled perturbed discretized NLS equations. Physica D 113, 326–331 (1998)

    Article  MathSciNet  Google Scholar 

  34. Rothos, V.M.: Melnikov theory of coupled perturbed discretized NLS equations. Chaos Solitons Fractals 10, 1119–1134 (1999)

    Article  MathSciNet  Google Scholar 

  35. Li, Y.G.: Smale horseshoes and symbolic dynamics in perturbed nonlinear Schrödinger equations. J. Nonlinear Sci. 9, 363–415 (1999)

    Article  MathSciNet  Google Scholar 

  36. Zeng, C.C.: Homoclinic orbits for the perturbed nonlinear Schrödinger equation. Commun. Pure Appl. Math. LIII, 1222–1283 (2000)

    Article  Google Scholar 

  37. Li, Y.G.: Singularly perturbed vector and scalar nonlinear Schrödinger equations with persistent homoclinic orbits. Stud. Appl. Math. 109, 19–38 (2002)

    Article  MathSciNet  Google Scholar 

  38. Guo, B.L., Chen, H.L.: Homoclinic orbits for a perturbed quintic–cubic NLS equation. Commun. Nonlinear Sci. Numer. Simul. 6, 22–7230 (2001)

    Google Scholar 

  39. Guo, B.L., Chen, H.L.: Persistent homoclinic orbits for a perturbed cubic–quintic NLS equation. J. Partial Differ. Equ. 15, 6–36 (2002)

    MATH  Google Scholar 

  40. Li, Y.G.: Homoclinic tubes in nonlinear Schrödinger equation under Hamiltonian perturbations. Prog. Theor. Phys. 101, 559–577 (1999)

    Article  Google Scholar 

  41. Li, Y.G.: Homoclinic tubes in discrete nonlinear Schrodinger equation under Hamiltonian perturbations. Nonlinear Dyn. 31, 393–434 (2003)

    Article  MathSciNet  Google Scholar 

  42. Li, Y.C.: Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation. Dyn. Partial Differ. Equ. 1, 87–123 (2004)

    Article  MathSciNet  Google Scholar 

  43. Li, Y.C.: Existence of chaos for nonlinear Schrödinger equation under singular perturbation. Dyn. Partial Differ. Equ. 1, 225–237 (2004)

    Article  MathSciNet  Google Scholar 

  44. Wu, R.C., Sun, J.H.: A brief survey on constructing homoclinic structures of soliton equations. Int. J. Bifurc. Chaos 16, 2799–2813 (2006)

    Article  MathSciNet  Google Scholar 

  45. Wu, R.C., Sun, J.H.: Homoclinic orbits for perturbed coupled nonlinear Schrödinger equations. Chaos Solitons Fractals 29, 423–430 (2006)

    Article  MathSciNet  Google Scholar 

  46. Wu, R.C., Jiang, W., Li, L.: Homoclinic orbits for coupled modified nonlinear Schrödinger equations. Chaos Solitons Fractals 38, 1093–1103 (2008)

    Article  MathSciNet  Google Scholar 

  47. Deng, G.F., Zhu, D.M.: Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrödinger equations. Nonlinear Anal. 73, 817–827 (2010)

    Article  MathSciNet  Google Scholar 

  48. Shatah, J., Zeng, C.C.: Homoclinic orbits for the perturbed sine-Gordon equation. Commun. Pure Appl. Math. LIII, 283–299 (2000)

    Article  MathSciNet  Google Scholar 

  49. Rothos, V.M.: Homoclinic orbits in the near-integrable double discrete sine-Gordon equation. J. Phys. A Math. Gen. 34, 3671–3688 (2001)

    Article  MathSciNet  Google Scholar 

  50. Rothos, V.M.: Homoclinic intersections and Melnikov method for perturbed sine-Gordon equation. Dyn. Syst. 16, 279–302 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Li, Y.C.: Homoclinic tubes and chaos in perturbed sine-Gordon equation. Chaos Solitons Fractals 20, 791–798 (2004)

    Article  MathSciNet  Google Scholar 

  52. Li, Y.C.: Chaos and shadowing around a heteroclinically tubular cycle with an application to sine-Gordon equation. Stud. Appl. Math. 116, 145–171 (2006)

    Article  MathSciNet  Google Scholar 

  53. Li, Y.C.: Chaos in miles’ equations. Chaos Solitons Fractals 22, 965–974 (2004)

    Article  MathSciNet  Google Scholar 

  54. Li, Y.C.: Chaos in PDEs and Lax pairs of Euler equations. Acta Appl. Math. 77, 181–214 (2003)

    Article  MathSciNet  Google Scholar 

  55. Li, Y.C.: Melnikov analysis for a singularly perturbed DSII equation. Stud. Appl. Math. 114, 285–306 (2005)

    Article  MathSciNet  Google Scholar 

  56. Lan, Y., Li, Y.C.: On the dynamics of Navier–Stokes and Euler equations. J. Stat. Phys. 132, 35–76 (2008)

    Article  MathSciNet  Google Scholar 

  57. Taniuti, T., Wei, C.C.: Reductive perturbation method in nonlinear wave propagation. J. Phys. Soc. Jpn. 24, 941–946 (1968)

    Article  Google Scholar 

  58. Zhang, W., Wang, D.M., Yao, M.H.: Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn. 78, 839–856 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant Nos. 11290152 and 11427801, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wu, Q.L., Yao, M.H. et al. Analysis on global and chaotic dynamics of nonlinear wave equations for truss core sandwich plate. Nonlinear Dyn 94, 21–37 (2018). https://doi.org/10.1007/s11071-018-4343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4343-6

Keywords

Navigation