Skip to main content
Log in

A new topological indicator for chaos in mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main goal in this paper was to provide a novel chaos indicator based on a topological model which allows to calculate the fractal dimension of any curve. A fractal structure is a topological tool whose recursiveness becomes ideal to generalize the concept of fractal dimension. In this paper, we provide an algorithm to calculate a new fractal dimension specially designed for a parametrization of a curve or a random process, whose definition is made by means of fractal structures. As an application, we explore the use of this new concept of fractal dimension as a chaos indicator for dynamical systems, in a similar way to the classical maximal Lyapunov exponent. To illustrate it, we apply the new fractal dimension as an indicator to model the chaotic behavior of a satellite which is moving around a planet whose gravity field is approximated by the field of a point mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arenas, F.G., Sánchez-Granero, M.A.: A characterization of non-archimedeanly quasimetrizable spaces. Rend. Istit. Mat. Univ. Trieste Suppl XXX, 21–30 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Beletsky, V.V.: Motion of an Artificial Satellite About a Center of Mass. Israel Program for Scientific Translations, Jerusalem (1966)

    Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them; part 1: theory. Meccanica 15(1), 9–20 (1980)

    Article  MATH  Google Scholar 

  4. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 2: numerical application. Meccanica 15(1), 21–30 (1980)

    Article  MATH  Google Scholar 

  5. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  6. Feder, J.: Fractals. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  7. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach. Topol. Appl. 159(7), 1825–1837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures. Topol. Appl. 163, 93–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach revisited. J. Math. Anal. Appl. 409(1), 321–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández-Martínez, M., Sánchez-Granero, M.A.: Trinidad Segovia, J.E.: Fractal dimension for fractal structures: applications to the domain of words. Appl. Math. Comput. 219(3), 1193–1199 (2012)

  11. Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E.: Fractal dimensions for fractal structures and their applications to financial markets, Aracne editrice S.r.l., Roma (2013)

  12. Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E.: Román-Sánchez, I.M.: An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A 378(32–33), 2355–2362 (2014)

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Iverson, K.E.: A Programming Language. Wiley, New York (1962)

    Book  MATH  Google Scholar 

  15. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance, London (2009)

    Book  MATH  Google Scholar 

  16. Lamperti, J.W.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W.H. Freeman & Company, San Francisco (1977)

    MATH  Google Scholar 

  18. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Company, New York (1982)

    MATH  Google Scholar 

  19. Mandelbrot, B.B.: Gaussian Self-Affinity and Fractals. Springer, New York (2002)

    Google Scholar 

  20. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press Inc., Boca Raton (1995)

    MATH  Google Scholar 

  21. Samorodnitsky, G., Taqqu, M.S.: Stable Non-gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  22. Sánchez-Granero, M.A.: Fractal structures, in: asymmetric topology and its applications. In: Quaderni di Matematica, vol. 26, Aracne, pp. 211–245 (2012)

  23. Sánchez-Granero, M.A., Fernández-Martínez, M., Trinidad Segovia, J.E.: Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series. Eur. Phys. J. B 85(3), 1–13 (2012)

  24. Tijera, M., Maqueda, G., Cano, J.L., Yagüe, C.: Analysis offractal dimension of the wind speed and its relationships withturbulent and stability parameters, chapter 2 of [Sid-Ali Ouadfeul(ed.), Fractal Analysis and Chaos in Geosciences], Intech (2012)

  25. Trinidad Segovia, J.E., Fernández-Martánez, M., Sánchez-Granero, M.A.: A note on geometric method-based procedures to calculate the Hurst exponent. Phys. A 391(6),2209–2214 (2012)

  26. Zotos, E.E.: The Fast Norm Vector Indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn. 70, 951–978 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

M. Fernández-Martínez especially acknowledges the valuable support provided by Centro Universitario de la Defensa en la Academia General del Aire de San Javier (Murcia, Spain). M.A. Sánchez-Granero acknowledges the support of the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01. J. E. Trinidad Segovia appreciates the support of Junta de Andalucía, Grant P09-SEJ-5404. J.A. Vera-López acknowledges the support of MICINN/FEDER, Grant No. MTM2011-22587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Vera-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E. et al. A new topological indicator for chaos in mechanical systems. Nonlinear Dyn 84, 51–63 (2016). https://doi.org/10.1007/s11071-015-2207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2207-x

Keywords

Navigation