Skip to main content
Log in

Hamiltonian structures of dynamics of a gyrostat in a gravitational field

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a gyrostat in a gravitational field is a fundamental problem in celestial mechanics and space engineering. This paper investigates this problem in the framework of geometric mechanics. Based on the natural symplectic structure, non-canonical Hamiltonian structures of this problem are derived in different sets of coordinates of the phase space. These different coordinates are suitable for different applications. Corresponding Poisson tensors and Casimir functions, which govern the phase flow and phase space structures of the system, are obtained in a differential geometric method. Equations of motion, as well as expressions of the force and torque, are derived in terms of potential derivatives. We uncover the underlying Lie group framework of the problem, and we also provide a systemic approach for equations of motion. By assuming that the gravitational field is axis-symmetrical and central, SO(2) and SO(3) symmetries are introduced into the general problem respectively. Using these symmetries, we carry out two reduction processes and work out the Poisson tensors of the reduced systems. Our results in the central gravitational filed are in consistent with previous results. By these reductions, we show how the symmetry of the problem affects the phase space structures. The tools of geometric mechanics used here provide an access to several powerful techniques, such as the determination of relative equilibria on the reduced system, the energy-Casimir method for determining the stability of equilibria, the variational integrators for greater accuracy in the numerical simulation and the geometric control theory for control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barkin, Y.V.: ‘Oblique’ regular motions of a satellite and some small effects in the motions of the Moon and Phobos. Cosm. Res. 23, 20–30 (1985)

    Google Scholar 

  2. Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 40(3), 215–247 (1998)

    MathSciNet  Google Scholar 

  3. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2003)

    Book  MATH  Google Scholar 

  4. Bloch, A.M., Marsden, J.E.: Stabilization of rigid body dynamics by the Energy-Casimir method. Syst. Control Lett. 14, 341–346 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Alvarez, G.S.: Stabilization of rigid body dynamics by internal and external torques. Automatica 28(4), 745–756 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bloch, A.M., Hussein, I.I., Leok, M., Sanyal, A.K.: Geometric structure-preserving optimal control of a rigid body. J. Dyn. Control Syst. 15(3), 307–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Y., Huang, K., Lu, Q.: Hamiltonian structure for rigid body with flexible attachments in a circular orbit. Acta Mech. Sin. 9(1), 72–79 (1993)

    Article  MATH  Google Scholar 

  8. Cheng, Y., Huang, K., Lu, Q.: Stability of a class of coupled rigid-elastic systems with symmetry breaking. Sci. China Ser. A 37(9), 1062–1069 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, Y., Lu, Q.: Planar motion and stability for a rigid body with a beam in a field of central gravitational force. Sci. China Ser. A 45(11), 1479–1486 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crouch, P.E.: Spacecraft attitude control and stabilization: applications of geometric control theory to rigid body models. IEEE Trans. Autom. Control 29(4), 321–331 (1984)

    Article  MATH  Google Scholar 

  11. Duboshin, G.N.: Differential equations of the translational-rotational motion of mutually attracting bodies. Astron. Zh. 35, 265–276 (1958)

    Google Scholar 

  12. Fahnestock, E.G., Lee, T., Leok, M., McClamroch, N.H., Scheeres, D.J.: Polyhedral potential and variational integrator computation of the full two body problem (2006). http://arxiv.org/abs/math/0608695v1

  13. Guirao, J.L.G., Vera, J.A.: Dynamics of a gyrostat on cylindrical and inclined Eulerian equilibria in the three-body problem. Acta Astronaut. 66, 595–604 (2010)

    Article  Google Scholar 

  14. Guirao, J.L.G., Vera, J.A.: Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability. J. Phys. A, Math. Theor. 43, 195203 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hall, C.D.: Attitude dynamics of orbiting gyrostats. In: Prêtka-Ziomek, H., Wnuk, E., Seidelmann, P.K., Richardson, D. (eds.) Dynamics of Natural and Artificial Celestial Bodies, pp. 177–186. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  16. Hall, C.D., Beck, J.A.: Hamiltonian mechanics and relative equilibria of orbiting gyrostats. J. Astronaut. Sci. 55(1), 53–65 (2007)

    Google Scholar 

  17. Koon, W.-S., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017, 11–38 (2004)

    Article  Google Scholar 

  18. Krishnaprasad, P.S.: Lie-Poisson structures and dual-spin spacecraft. In: Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, Texas, pp. 814–824 (1983)

    Chapter  Google Scholar 

  19. Krishnaprasad, P.S., Marsden, J.E.: Hamiltonian structure and stability for rigid bodies with flexible attachments. Arch. Ration. Mech. Anal. 98, 137–158 (1987)

    Article  MathSciNet  Google Scholar 

  20. Krishnaprasad, P.S., Marsden, J.E., Posbergh, T.A.: Stability analysis of a rigid body with a flexible attachment using the Energy-Casimir method. Contemp. Math. 68, 253–273 (1987)

    Article  MathSciNet  Google Scholar 

  21. Krupa, M., Schagerl, M., Steindl, A., Szmolyan, P., Troger, H.: Relative equilibria of tethered satellite systems and their stability for very stiff tethers. Dyn. Syst. 16, 253–278 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Lee, T.: Computational geometric mechanics, control, and estimation of rigid bodies (2008). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.6057&rep=rep1&type=pdf

  23. Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem in orbital mechanics. Celest. Mech. Dyn. Astron. 98, 121–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, T., Leok, M., McClamroch, N.H.: Optimal attitude control of a rigid body using geometrically exact computations on SO(3). J. Dyn. Control Syst. 14(4), 465–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, T., McClamroch, N.H., Leok, M.: A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. In: Proceeding of the 2005 IEEE Conference on Control Applications, Toronto, Canada, 28–31 August 2005, pp. 962–967 (2005)

    Google Scholar 

  27. Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maciejewski, A.J.: A simple model of the rotational motion of a rigid satellite around an oblate planet. Acta Astron. 47, 387–398 (1997)

    Google Scholar 

  29. Marsden, J.E.: Lectures on Mechanics. London Math. Society, Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  30. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. TAM Series, vol. 17, pp. 349–352. Springer, New York (1999)

    MATH  Google Scholar 

  31. Molina, R., Mondéjar, F.: Equilibria and stability for a gyrostat satellite in circular orbit. Acta Astronaut. 54, 77–82 (2003)

    Article  Google Scholar 

  32. Mondéjar, F., Vigueras, A.: The Hamiltonian dynamics of the two gyrostats problem. Celest. Mech. Dyn. Astron. 73, 303–312 (1999)

    Article  MATH  Google Scholar 

  33. Mondéjar, F., Vigueras, A., Ferrer, S.: Symmetries, reduction and relative equilibria for a gyrostat in the three-body problem. Celest. Mech. Dyn. Astron. 81, 45–50 (2001)

    Article  MATH  Google Scholar 

  34. Scheeres, D.J.: Spacecraft at small NEO (2006). arXiv:physics/0608158v1

  35. Vera, J.A.: Eulerian equilibria of a triaxial gyrostat in the three body problem: rotational Poisson dynamics in Eulerian equilibria. Nonlinear Dyn. 55, 191–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vera, J.A.: Dynamics of a triaxial gyrostat at a Lagrangian equilibrium of a binary asteroid. Astrophys. Space Sci. 323, 375–382 (2009)

    Article  MATH  Google Scholar 

  37. Vera, J.A.: Eulerian equilibria of a triaxial gyrostat in the three-body problem: rotational Poisson dynamics in Eulerian equilibria with oblateness. Acta Astronaut. 65, 755–765 (2009)

    Article  Google Scholar 

  38. Vera, J.A.: On the dynamics of a gyrostat on Lagrangian equilibria in the three body problem. Multibody Syst. Dyn. 23(3), 263–291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vera, J.A., Vigueras, A.: Reduction, relative equilibria and stability for a gyrostat in the n-body problem. Monogr. Semin. Mat. García Galdeano 31, 257–271 (2004)

    MathSciNet  Google Scholar 

  40. Vera, J.A., Vigueras, A.: Hamiltonian dynamics of a gyrostat in the n-body problem: relative equilibria. Celest. Mech. Dyn. Astron. 94, 289–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Volterra, V.: Sur la theorie des variations des latitudes. Acta Math. 22, 201–358 (1899)

    Article  MathSciNet  Google Scholar 

  42. Wang, L.-S., Cheng, S.-F.: Dynamics of two spring-connected masses in orbit. Celest. Mech. Dyn. Astron. 63, 289–312 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, L.-S., Chern, S.-J., Shin, C.-W.: On the dynamics of a tethered satellite system. Arch. Ration. Mech. Anal. 127, 297–318 (1994)

    Article  MATH  Google Scholar 

  44. Wang, L.-S., Krishnaprasad, P.S.: Relative equilibria for two rigid bodies connected by a ball-in-socket joint. In: Proceeding of the 28th IEEE Conference on Decision and Control, Tampa, Florida, December 1989, pp. 692–697 (1989)

    Chapter  Google Scholar 

  45. Wang, L.-S., Krishnaprasad, P.S.: Gyroscopic control and stabilization. J. Nonlinear Sci. 2, 367–415 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50, 349–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, L.-S., Lian, K.-Y., Chen, P.-T.: Steady motions of gyrostat satellites and their stability. IEEE Trans. Autom. Control 40(10), 1732–1743 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, L.-S., Maddocks, J.H., Krishnaprasad, P.S.: Steady rigid-body motions in a central gravitational field. J. Astronaut. Sci. 40, 449–478 (1992)

    MathSciNet  Google Scholar 

  49. Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet. J. Aerosp. Eng. (2012, accepted). doi:10.1061/(ASCE)AS.1943-5525.0000222

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Appendices

Appendix A: Calculation of Poisson tensor B 1(z 1)

The Poisson tensor B 1(z 1) can be obtained in a differential geometric method. The natural canonical bracket is given by Eq. (19) on the manifold T Q(Ξ). Considering functions f,gC (ℝ18(z 1)), we define as follows:

(95)

According to Eqs. (19) and (24), we have

(96)

In order to calculate the differential of an arbitrary smooth function \(\tilde{f}\), we consider WT Ξ (T Q) defined as follows:

(97)

where variables in Ξ are rearranged as for convenience. W generates the curve in T Q

(98)

Thus, the differential is given by

(99)

where variables in z 1 are rearranged as (r,p,α 1,β 1,γ 1,Γ). Equation (99) can be written further as follows:

(100)

where is the jth column of the matrix . Rearranging Eq. (100) yields

(101)

where

(102)

The element can be denoted by

(103)

And then we get

(104)

According to Eqs. (101) and (104), we have

(105)

Noticing Eq. (103), we can obtain the derivatives of \(\tilde{f}\) as follows:

(106)

where (⋅) is the isomorphism defined by Eq. (5). Then, according to Eq. (96), the Poisson bracket can be derived as

(107)

The term AM g in Eq. (107) can be written as

(108)

And then, we rewrite Eq. (107) in the following form:

(109)

Now the Poisson tensor B 1(z 1) has been derived.

Appendix B: Calculation of Poisson tensor B 2(z 2)

To get the Poisson tensor B 2(z 2), we consider f,gC (ℝ18(z 2)) and define as follows:

(110)

According to Eqs. (19) and (38), we have

(111)

Then we consider WT Ξ (T Q) defined in Eq. (97) and the curve in T Q generated by W given by Eq. (98). Thus, the differential is given by

(112)

Equation (112) can be written as follows:

(113)

where is the jth row of the matrix . Rearranging Eq. (113) yields

(114)

where

(115)

We define by Eq. (103) and have the differential in Eq. (104). According to Eqs. (104) and (114), we have vectors a,b,c and d in Eq. (104) as follows:

(116)

According to Eq. (103), the derivatives of \(\tilde{f}\) can be obtained as follows:

(117)

Then Eq. (111) can be written as follows:

(118)

We rewrite Eq. (118) in the following form:

(119)

Now we have obtained the Poisson tensor B 2(z 2).

Appendix C: Calculation of Poisson tensor B 3(z 3)

The Poisson tensor B 3(z 3) can be derived in a similar method to Appendixes A and B. Based on f,gC (ℝ18(z 3)), we define as

(120)

Using Eqs. (19) and (51), we have

(121)

Then we define WT Ξ (T Q) by Eq. (97) and the curve in T Q by Eq. (98). Thus, the differential can be written as

(122)

Equation (122) can be written as follows:

(123)

Equation (123) can be further rearranged as follows:

(124)

where

(125)

We have in Eq. (103) and the differential in Eq. (104). Using Eq. (124), we can obtain the vectors in Eq. (104) as follows:

(126)

Using Eq. (103), we can obtain the derivatives of \(\tilde{f}\) as follows:

(127)

Then according to Eq. (121), Poisson bracket can be derived as

(128)

We rewrite Eq. (128) in the following form:

(129)

Now the Poisson tensor B 3(z 3) has been obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, S. Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn 70, 231–247 (2012). https://doi.org/10.1007/s11071-012-0447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0447-6

Keywords

Navigation