Skip to main content
Log in

Energetically consistent model of slipping and sticking frictional impacts in multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A unifying slipping and sticking frictional impact model for multibody systems in contact with a frictional surface is presented. It is shown that the model can lead to energetic consistency in both slip and stick states upon imposing specific constraints on the coefficient of friction (CoF) and the coefficient of restitution (CoR). A discriminator in the form of a quadratic function of the pre-impact velocity is introduced based on an isotropic Coulomb constraint such that its sign determines whether the impact occurs in the sticking mode or in the slipping mode just prior to the contact. Solving for the zero-crossings of such a function in terms of the CoF and the CoR variables leads to another discriminator called Critical CoF, which is the lowest static CoF required to prevent the subsequent impulse vector violating the isotropic friction cone constraint. Investigating conditions for the energetically consistent impact model reveals that the maximum values of either CoR or CoF should be limited depending on the stick or slip state. Furthermore, it is shown that these upper-bound limits in conjunction with the introduced Critical CoF variable can be used to specify the admissible set of CoR and CoF parameters, which can be represented by two distinct regions in the plane of CoF versus CoR. Finally, a case study using the Kane’s example for impact in an MBS involving frictional impacts occurring in both slip and stick states are presented to support the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Müller, A.: Forward dynamics of variable topology mechanisms—the case of constraint activation. In: ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Catalonia, Spain (2015)

    Google Scholar 

  2. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking in constrained robots. IEEE Trans. Autom. Control 33, 419–426 (1988)

    MATH  Google Scholar 

  3. Garcia de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Google Scholar 

  4. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Appl. Mech. 64, 86–98 (1994)

    MATH  Google Scholar 

  5. Preclik, T.: Models and algorithms for ultrascale simulations of non-smooth granular dynamics. PhD dissertation, Technische Fakultät/Department Informatik (2014)

  6. Aghili, F., Su, C.: Impact dynamics in robotic and mechatronic systems. In: 2017 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 163–167 (2017)

    Google Scholar 

  7. Gottschlich, S.N., Kak, A.C.: A dynamic approach to high-precision parts mating. IEEE Trans. Syst. Man Cybern. 19(4), 797–810 (1989)

    Google Scholar 

  8. Walker, I.D.: Impact configurations and measures for kinematically redundant and multiple armed robot systems. IEEE Trans. Robot. Autom. 10(5), 670–683 (1994)

    Google Scholar 

  9. Dupree, K., Liang, C.H., Hu, G., Dixon, W.E.: Adaptive Lyapunov-based control of a robot and mass-spring system undergoing an impact collision. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38(4), 1050–1061 (2008)

    Google Scholar 

  10. Su, C.-Y., Stepanenko, Y.: Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trans. Syst. Man Cybern. 25(5), 871–878 (1995)

    Google Scholar 

  11. Aghili, F., Buehler, M., Hollerbach, J.M.: Dynamics and control of direct-drive robots with positive joint torque feedback. In: IEEE Int. Conf. Robotics and Automation, vol. 11, pp. 1156–1161 (1997)

    Google Scholar 

  12. Zhang, F., Xi, Y., Lin, Z., Chen, W.: Constrained motion model of mobile robots and its applications. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 773–787 (2009)

    Google Scholar 

  13. Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 29(6), 566–572 (1999)

    Google Scholar 

  14. Mu, X., Wu, Q.: On impact dynamics and contact events for biped robots via impact effects. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(6), 1364–1372 (2006)

    Google Scholar 

  15. Konno, A., Myojin, T., Matsumoto, T., Tsujita, T., Uchiyama, M.: An impact dynamics model and sequential optimization to generate impact motions for a humanoid robot. Int. J. Robot. Res. 30(13), 1596–1608 (2011)

    Google Scholar 

  16. Yoshida, Y., Takeuchi, K., Miyamoto, Y., Sato, D., Nenchev, D.: Postural balance strategies in response to disturbances in the frontal plane and their implementation with a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. 44(6), 692–704 (2014)

    Google Scholar 

  17. Nenchev, D.N., Yoshida, K.: Impact analysis and post-impact motion control issues of a free-floating space robot contacting a tumbling object. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation, vol. 1, pp. 913–919 (1998)

    Google Scholar 

  18. Keller, J.B.: Impact with friction. J. Appl. Mech. 53(1), 1–4 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7, 471–497 (1995)

    MathSciNet  Google Scholar 

  20. Stronge, W.J., James, R., Ravani, B.: Oblique impact with friction and tangential compliance. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 359(1789), 2447–2465 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Johansson, L.: A Newton method for rigid body frictional impact with multiple simultaneous impact points. Comput. Methods Appl. Mech. Eng. 191, 239–254 (2001)

    MATH  Google Scholar 

  22. Pfeiffer, F.: Mechanical System Dynamics. Springer, Berlin (2009)

    MATH  Google Scholar 

  23. Glocker, C.: Energetic consistency conditions for standard impacts. Multibody Syst. Dyn. 29(1), 77–117 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Moreau, J.J.: Bounded variation in time. In: Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1981)

    Google Scholar 

  25. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    MATH  Google Scholar 

  26. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer, Berlin (2008)

    MATH  Google Scholar 

  27. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Springer, Berlin (2008)

    MATH  Google Scholar 

  28. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Schindler, T., Nguyen, B., Trinkle, J.: Understanding the difference between prox and complementarity formulations for simulation of systems with contact. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1433–1438 (2011)

    Google Scholar 

  30. Stewart, D.E.: Dynamics with Inequalities: Impacts and Hard Constraints. Society for Industrial & Applied Mathematics, New York (2011)

    MATH  Google Scholar 

  31. Zheng, Y.F., Hemami, H.: Mathematical modeling of a robot collision with its environment. J. Robot. Syst. 1, 289–307 (1985)

    Google Scholar 

  32. Volpe, R., Khosla, P.: A theoretical and experimental investigation of impact control for manipulators. Int. J. Robot. Res. 21, 351–365 (1993)

    Google Scholar 

  33. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8, 021012 (2013)

    Google Scholar 

  35. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440–445 (1975). Series E

    Google Scholar 

  36. Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnol, London (1960)

    MATH  Google Scholar 

  37. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Google Scholar 

  38. Aghili, F.: Modelling and analysis of multiple impacts in multibody systems under unilateral and bilateral constrains based on linear projection operators. Multibody Syst. Dyn. 46(1), 41–62 (2019)

    MathSciNet  Google Scholar 

  39. Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  40. Wang, Y., Mason, M.: Two-dimensional rigid-body collisions with friction. J. Appl. Mech. 59, 635–642 (1992)

    MATH  Google Scholar 

  41. Djerassi, S.: Collision with friction, part a. Multibody Syst. Dyn. 21, 37–54 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Jia, Y.-B.: Three-dimensional impact: energy-based modeling of tangential compliance. Int. J. Robot. Res. 32(1), 56–83 (2013)

    Google Scholar 

  43. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1988)

    Google Scholar 

  44. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Nguyen, N.S., Brogliato, B.: Multiple Impacts in Dissipative Granular Chains. Springer, Berlin (2013)

    Google Scholar 

  46. Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. In: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1613–1618 (2009)

    Google Scholar 

  47. Stronge, W.: Unraveling paradoxical theories for rigid body collisions. J. Appl. Mech. 58, 1049–1055 (1991)

    MATH  Google Scholar 

  48. Stoianovici, D., Hurmuzlu, Y.: A critical study of the applicability of rigid-body collision theory. J. Appl. Mech. 63(2), 307–316 (1996)

    Google Scholar 

  49. Najafabadi, S.M., Kovecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 120, 163–176 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Aghili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili, F. Energetically consistent model of slipping and sticking frictional impacts in multibody systems. Multibody Syst Dyn 48, 193–209 (2020). https://doi.org/10.1007/s11044-019-09703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09703-2

Keywords

Navigation