Skip to main content
Log in

Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on the work of Itzykson and Zuber on Kontsevich’s integrals, we give a geometric interpretation and a simple proof of Zhou’s explicit formula for the Witten–Kontsevich tau function. More precisely, we show that the numbers \(A_{m,n}^\mathrm{Zhou}\) defined by Zhou coincide with the affine coordinates for the point of the Sato Grassmannian corresponding to the Witten–Kontsevich tau function. Generating functions and new recursion relations for \(A_{m,n}^\mathrm{Zhou}\) are derived. Our formulation on matrix-valued affine coordinates and on tau functions remains valid for generic Grassmannian solutions of the KdV hierarchy. A by-product of our study indicates an interesting relation between the matrix-valued affine coordinates for the Witten–Kontsevich tau function and the V-matrices associated with the R-matrix of Witten’s 3-spin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The rescaling is due to a different choice of the flow normalizations where our choice is more natural and has the advantage that all coefficients are rational; see (3.23).

  2. The standard Giambelli formula [14] says

    $$\begin{aligned} s_{(m_1,\dots , m_k |n_1,\dots ,n_k)}({\varvec{\theta }}) = \det _{1\le i,j\le k}(s_{(m_i|n_j)}({\varvec{\theta }})). \end{aligned}$$
  3. In [4], the notation for \(\rho \) is R. In this paper, the notation R is used for the R-matrix.

References

  1. Balogh, F., Yang, D., Zhou, J.: Explicit formula for Witten’s r-spin partition function (in preparation)

  2. Bertola, M., Dubrovin, B., Yang, D.: Correlation functions of the KdV hierarchy and applications to intersection numbers over. Phys. D Nonlinear Phenom. 327, 30–57 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cafasso, M.: Block Toeplitz determinants, constrained KP and Gelfand–Dickey hierarchies. Math. Phys. Anal. Geom. 11(1), 11–51 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco. S. (ed) Integrable Systems and Quantum Groups. Springer Lecture Notes in Math. 1620, 120–348 (1996)

  5. Ènolskii, V.Z., Harnad, J.: Schur function expansions of KP \(\tau \)-functions associated to algebraic curves. Russian Math. Surv. 66(4), 767 (2011)

    Article  ADS  MATH  Google Scholar 

  6. Gantmacher, F.R.: The Theory of Matrices, vol. I and II. AMS Chelsea Publishing, Providence (2000). (reprinted)

    MATH  Google Scholar 

  7. Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Itzykson, C., Zuber, J.-B.: Combinatorics of the modular group. II. The Kontsevich integrals. Int. J. Modern Phys. A 7(23), 5661–5705 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kac, V., Schwarz, A.: Geometric interpretation of the partition function of 2D gravity. Phys.Lett. B 257(3), 329–334 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kazarian, M., Lando, S.: An algebro-geometric proof of Wittens conjecture. J. Am. Math. Soc. 20(4), 1079–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Konopelchenko, B., Alonso, L.M.: The KP hierarchy in Miwa coordinates. Phys. Lett. A 258(4), 272–278 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Looijenga, E.: Cellular decompositions of compactified moduli spaces of pointed curves. In: Dijkgraaf, R., et al. (eds.) The Moduli Space of Curves, pp. 369–400. Birkhäuser, Basel (1995)

    Chapter  Google Scholar 

  14. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. Oxford University Press Inc., NewYork (1995)

    MATH  Google Scholar 

  15. Mirzakhani, M.: Weil–Petersson volumes and intersection theory on the moduli space of curves. J. Am. Math. Soc. 20(1), 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz numbers, and matrix models. I. Proc. Symposia Pure Math. 80, 325–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pandharipande, R., Pixton, A., Zvonkine, D.: Relations on \(\overline{\cal{M}}_ {g, n}\) via 3-spin structures. (2013) arXiv preprint arXiv:1303.1043

  18. Sato, M.: Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds (random systems and dynamical systems). RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  19. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Goldberg, L.R., Phillips, A.V. (eds.) Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), pp. 235-269. Publish or Perish, Houston (1993)

  22. Zvonkine D.: Strebel differentials on stable curves and Kontsevich’s proof of Witten’s conjecture. (2002) arXiv preprint arXiv:math/0209071

  23. Zhou, J.: Explicit Formula for Witten-Kontsevich Tau-Function. (2013) arXiv preprint arXiv:1306.5429

  24. Zhou, J.: Emergent geometry and mirror symmetry of a point. (2015) arXiv preprint arXiv:1507.01679

Download references

Acknowledgements

We would like to thank Boris Dubrovin, Marco Bertola, and Jian Zhou for many helpful discussions and encouragements. F. B. wishes to thank John Harnad for introducing him to the subject of tau functions. D. Y. wishes to thank Youjin Zhang for his advises and helpful discussions. The work is partially supported by PRIN 2010-11 Grant “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions” of the Italian Ministry of Universities and Researches, and by the Marie Curie IRSES project RIMMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Balogh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, F., Yang, D. Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function. Lett Math Phys 107, 1837–1857 (2017). https://doi.org/10.1007/s11005-017-0965-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0965-8

Keywords

Mathematics Subject Classification

Navigation