Skip to main content
Log in

Some estimates of the normal approximation for φ-mixing random variables

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let ξ n be a φ-mixing sequence of real random variables such that \( \mathbb{E}{\xi_n} = 0 \), and let Y be a standard normal random variable. Write S n = ξ 1 + · · · + ξ n and consider the normalized sums Z n = S n /B n , where \( B_n^2 = \mathbb{E}S_n^2 \). Assume that a thrice differentiable function \( h:\mathbb{R} \to \mathbb{R} \) satisfies \( {\sup_{x \in \mathbb{R}}}\left| {{h^s}(x)} \right| < \infty \). We obtain upper bounds for \( {\Delta_n} = \left| {\mathbb{E}h\left( {{Z_n}} \right) - \mathbb{E}h(Y)} \right| \) in terms of Lyapunov fractions with explicit constants (see Theorem 1). In a particular case, the obtained upper bound of Δ n is of order O(n 1/2).

We note that the φ-mixing coefficients φ(r) are defined between the “past” and “future.” To prove the results, we apply the Bentkus approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bentkus, A new method for approximation in probability and operator theories, Lith. Math. J., 43(4):367–388, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Bentkus, A Lyapunov type bound in \( {\mathbb{R}^d} \), Teor. Veroyatn. Primen., 49(2):400–410, 2004.

    MathSciNet  Google Scholar 

  3. V. Bentkus and J. Sunklodas, On normal approximations to strongly mixing random fields, Publ. Math., 70(3–4):253–270, 2007.

    MathSciNet  MATH  Google Scholar 

  4. A.V. Bulinski, Limit Theorems Under Conditions of Weak Dependency, Moscow State Univ. Press, Moscow, 1989 (in Russian).

    Google Scholar 

  5. C. Cealera, Contributions to the study of dependent random variables, Stud. Cercet. Mat., 44(1):13–35, 1992 (in Romanian).

    MathSciNet  MATH  Google Scholar 

  6. L.H.Y. Chen, Poisson approximation for dependent trials, Ann. Probab., 3(3):534–545, 1975.

    Article  MATH  Google Scholar 

  7. R.V. Erickson, L 1 bounds for asymptotic normality of m-dependent sums using Stein’s technique, Ann. Probab., 2(3):522–529, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Hall and C.C. Heyde, Martingale Limit Theory and Its Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.

    Google Scholar 

  9. L. Heinrich, A method of the derivation of limit theorems for sums ofm-dependent random variables, Z.Wahrscheinlichkeitstheor. Verw. Geb., 60(4):501–515, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. I.A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl., 7:349–382, 1962.

    Article  MATH  Google Scholar 

  11. B.S. Nahapetian, An approach to limit theorems for dependent random variables, Teor. Veroyatn. Primen., 32(3):589–594, 1987 (in Russian).

    Google Scholar 

  12. E. Rio, About the Lindeberg method for strongly mixing sequences, ESAIM, Probab. Stat., 1:35–61, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Rio, Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes, Probab. Theory Relat. Fields, 104(2):255–282, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  14. V.V. Shergin, Rate of convergence in the central limit theorem for m-dependent random variables, Teor. Veroyatn. Primen., 24(4):781–794, 1979 (in Russian).

    MathSciNet  MATH  Google Scholar 

  15. Ch. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, in Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, Univ. California Press, Berkeley, CA, 1972, pp. 583–602.

  16. J. Sunklodas, Approximation of distributions of sums of weakly dependent random variables by the normal distribution, in Yu.V. Prokhorov and V. Statulevičius (Eds.), Limit Theorems of Probability Theory, Springer-Verlag, Berlin, Heidelberg, New York, 2000, pp. 113–165.

    Google Scholar 

  17. J. Sunklodas, On normal approximation for strongly mixing random variables, Acta Appl. Math., 97(1–3):251–260, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Sunklodas, On normal approximation for strongly mixing random fields, Teor. Veroyatn. Primen., 52(1):60–68, 2007 (in Russian).

    MathSciNet  Google Scholar 

  19. J. Sunklodas, On L 1 bounds for asymptotic normality of some weakly dependent random variables, Acta Appl. Math., 102(1):87–98, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Sunklodas, Some estimates of the normal approximation for independent non-identically distributed random variables, Lith. Math. J., 51(1):66–74, 2011.

    Article  Google Scholar 

  21. M. Talagrand, Mean Field Models for Spin Glasses. Vol. I: Basic Examples, Springer-Verlag, Berlin, Heidelberg, New York, 2010.

    Google Scholar 

  22. A.N. Tikhomirov, On the rate of convergence in the central limit theorem for weakly dependent variables, Theory Probab. Appl., 25(4):790–809, 1980.

    Article  MathSciNet  Google Scholar 

  23. S.A. Utev, Sums of weakly dependent random variables, Sib. Math. J., 32(4):675–690, 1991.

    Article  MathSciNet  Google Scholar 

  24. T.M. Zuparov, On the rate of convergence in the central limit theorem for weakly dependent random variables, Theory Probab. Appl., 36(4):783–792, 1991.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Kazys Sunklodas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazys Sunklodas, J. Some estimates of the normal approximation for φ-mixing random variables. Lith Math J 51, 260–273 (2011). https://doi.org/10.1007/s10986-011-9124-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-011-9124-6

Keywords

MSC

Navigation