Skip to main content
Log in

Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New numerical approach has been selected for simulating magnetic force and radiation influences on alumina transportation within a permeable medium. To enhance characteristics of working fluid, we choose Al2O3–water with various shapes of nanoparticles. Various amounts of radiation, magnetic force and buoyancy have been considered to show their impacts on nanoparticles transportation. Brownian motion influences on working fluid thermal conductivity and viscosity were involved. Outcomes prove that convection decreases with augment of magnetic forces. Considering radiation can increase Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

Nu :

Nusselt number

\(K\) :

Permeability

T :

Temperature

Nu :

Nusselt number

B :

Magnetic field

\(Rd\) :

Radiation parameter

V :

Vertical velocity

\(Ra\) :

Rayleigh number

Ha :

Hartmann number

\(\beta\) :

Thermal expansion coefficient

\(\varOmega\) :

Vorticity

\(\theta\) :

Temperature

\(\upsilon\) :

Kinetic viscosity

\(\sigma\) :

Electrical conductivity

nf:

Nanofluid

M:

Magnetic

p:

Porous

References

  1. Afridi MI, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300.

    Article  Google Scholar 

  2. Sajjadi H, Amiri Delouei A, Sheikholeslami M, Atashafrooz M, Succi S. Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method. Phys A. 2019;515:474–96.

    Article  CAS  Google Scholar 

  3. Rashidi S, Mahian O, Mohseni Languri E. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  5. Aman S, Khan I, Ismail Z, Salleh MZ, Tlili I. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: an application to solar energy. Results Phys. 2018;9:1352–62.

    Article  Google Scholar 

  6. Sajjadi H, Amiri Delouei A, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    Article  CAS  Google Scholar 

  7. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7093-2.

    Article  Google Scholar 

  8. Hussanan A, Salleh MZ, Khan I. Microstructure and inertial characteristics of a magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. J Mol Liq. 2018;255:64–75.

    Article  CAS  Google Scholar 

  9. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects. Results Phys. 2018;10:36–45.

    Article  CAS  Google Scholar 

  10. Khan I, Abro KA, Mirbhar MN, Tlili I. Thermal analysis in Stokes’ second problem of nanofluid: applications in thermal engineering. Case Stud Therm Eng. 2018;12:271–5.

    Article  Google Scholar 

  11. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128:1765–70.

    Article  CAS  Google Scholar 

  12. Ahmed N, Adnan, Khan U, Mohyud-Din ST. Unsteady radiative flow of chemically reacting fluid over a convectively heated stretchable surface with cross-diffusion gradients. Int J Therm Sci. 2017;121:182–91. https://www.sciencedirect.com/science/article/pii/S1290072917308888

    Article  CAS  Google Scholar 

  13. Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018;12:374–80.

    Article  Google Scholar 

  14. Gul A, Khan I, Makhanov SS. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid. Results Phys. 2018;9:947–54.

    Article  Google Scholar 

  15. Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    Article  CAS  Google Scholar 

  16. Akar S, Rashidi S, Abolfazli Esfahani J. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6907-y.

    Article  Google Scholar 

  17. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    Article  CAS  Google Scholar 

  18. Haq RU, Hommouch Z, Hussain ST, Mekkaoui T. MHD mixed convection flow along a vertically heated sheet. J Hydrog Energy. 2017;42(24):15925–32.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    Article  CAS  Google Scholar 

  20. Khan A, Khan D, Khan I, Ali F, Karim F, Imran M. MHD flow of sodium alginate-based casson type nanofluid passing through a porous medium with newtonian heating. Sci Rep. 2018;8(1):8645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows: application to forced convection heat transfer over a horizontal cylinder. J Therm Anal Calorim. 2018. https://link.springer.com/article/10.1007/s10973-018-7022-4

  22. Fengrui S, Yuedong Y, Xiangfang L. The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy. 2018;143:995–1005.

    Article  Google Scholar 

  23. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  24. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018;9:1201–14.

    Article  Google Scholar 

  25. Ahmed TN, Khan I. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: maxwell Garnetts and Brinkman models. Results Phys. 2018;8:752–7.

    Article  Google Scholar 

  26. Saqib M, Ali F, Khan I, Sheikh NA, Khan A. Entropy generation in different types of fractionalized nanofluids. Arab J Sci Eng. 2018; 1–10. https://doi.org/10.1007/s13369-018-3342-8

  27. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  29. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  31. Li Z, Khan I, Shafee A, Tlili I, Asifa T. Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models. Energy Rep. 2018;4:393–9.

    Article  Google Scholar 

  32. Qi C, Liu M, Wang G, Pan Y, Liang L. Experimental research on stabilities, thermophysical properties and heat transfer enhancement of nanofluids in heat exchanger systems. Chin J Chem Eng. 2018. https://doi.org/10.1016/j.cjche.2018.03.021.

    Article  Google Scholar 

  33. Maleki H, Safaei MR, Alrashed AAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7277-9.

    Article  Google Scholar 

  34. Sajjadi H, Kefayati GHR. MHD turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method. Heat Transf Asian Res. 2016;45(8):795–814.

    Article  Google Scholar 

  35. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  36. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  37. Fengrui S, Yuedong Y, Xiangfang L, Li G, Miao Y, Han S, Chen Z. Flow simulation of the mixture system of supercritical CO2 & superheated steam in toe point injection horizontal wellbores. J Petrol Sci Eng. 2018;163:199–210.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Article  Google Scholar 

  39. Zheng N, Liu P, Shan F, Liu J, Liu Z, Liu W. Numerical studies on thermo-hydraulic characteristics of laminar flow in a heat exchanger tube fitted with vortex rods. Int J Therm Sci. 2016;100:448–56. https://doi.org/10.1016/j.ijthermalsci.2015.09.008.

    Article  Google Scholar 

  40. Ur Rehman F, Nadeem S, Haq RU. Thermophysical analysis of three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results Phys. 2018;8:316–23.

    Article  Google Scholar 

  41. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2018; 1–14. https://doi.org/10.1007/s10973-018-7483-5

  42. Sajjadi H, Kefayati R. Lattice Boltzmann simulation of turbulent natural convection in tall enclosures. Therm Sci. 2015;19:155–66.

    Article  Google Scholar 

  43. Sajjadi H, Abbassi MB, Kefayati GHR. Lattice Boltzmann simulation of turbulent natural convection in a square cavity using Cu/water nanofluid. J Mech Sci Technol. 2013;27(8):2341–9.

    Article  Google Scholar 

  44. Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. New York: Elsevier; 2019. ISBN 9780128141526.

    Google Scholar 

  45. Kim BS, Lee DS, Ha MY, Yoon HS. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int J Heat Mass Transf. 2008;51:1888–906.

    Article  CAS  Google Scholar 

  46. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  47. Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.

    Article  Google Scholar 

Download references

Acknowledgements

Above publication has been supported by the National Sciences Foundation of China (NSFC) (No. U1610109), Yingcai Project of CUMT (YC2017001), UOW and PAPD Vice-Chancellor’s Postdoctoral Research Fellowship. Also, the authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program No. BNUT/390051/97.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Sajjadi, H., Amiri Delouei, A. et al. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim 136, 2477–2485 (2019). https://doi.org/10.1007/s10973-018-7901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7901-8

Keywords

Navigation