Skip to main content

Advertisement

Log in

Hardy-Sobolev Inequalities in a Cone

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The attainability of the exact constant in the Hardy-Sobolev inequality is established in an arbitrary cone in ℝn. Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ghoussoub and C. Yuan, “Multiple solutions for quasi-linear PDEs involving critical Sobolev and Hardy exponents,” Trans. Amer. Math. Soc. 21 (2000), 5703–5743.

    MathSciNet  Google Scholar 

  2. P. L. Lions, F. Pacella, and M. Tricarico, “Best constant in Sobolev inequalities for functions vanishing on some part of the boundary and related questions,” Indiana Univ. Math. J. 37 (1988), no. 2, 301–324.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. V. Dem'yanov and A. I. Nazarov, “On the existence of an extremal function in the Sobolev embedding theorems with critical exponent” [in Russian], Algebra Anal. 17 (2005), no. 5, 108–142.

    MathSciNet  Google Scholar 

  4. H. Egnell, “Positive solutions of semilinear equations in cones,” Trans. Amer. Math. Soc. 330 (1992), no. 1, 191–201.

    MathSciNet  MATH  Google Scholar 

  5. N. Ghoussoub and X. S. Kang, “Hardy-Sobolev critical elliptic equations with boundary singularities,” Ann. Inst. H. Poincare. Anal. Non Lineaire 21 (2004), 767–793.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Ghoussoub, and F. Robert, The effect of Curvature on the Best Constant in the Hardy-Sobolev Inequalities, Pacific Inst. Math. Sci. Preprint, 2005.

  7. G. H. Hardy, D. E. Littlewood, and G. Polya, Inequalities, Cambridge, Cambridge Univ. Press, 1988.

    MATH  Google Scholar 

  8. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations [in Russian], Moscow, Nauka, 1973; English transl. of the 1st ed.: Linear and Quasilinear Elliptic Equations, New York, Academic Press, 1968.

    MATH  Google Scholar 

  9. V. G. Maz'ya, Sobolev Spaces [in Russian], Leningrad, Leningrad. Univ. Press, 1985.

    Google Scholar 

  10. L. Lions, “The concentration-compactness principle in the Calculus of Variations. The limit case. Parts 1 and 2,” Rev. Mat. Iberoamericana 1 (1985), 45–121 (1), 145–201 (2).

    MATH  Google Scholar 

  11. N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations,” Commun. Pure Appl. Math. 20 (1967), 721–747.

    MathSciNet  MATH  Google Scholar 

  12. G. A. Bliss, “An integral inequality,” J. London Math. Soc. 5 (1930), 40–46.

    MATH  Google Scholar 

  13. T. Aubin, “Problemes isoperimetriques et espaces de Sobolev,” J. Differ. Geom. 11 (1976), 573–598.

    MathSciNet  MATH  Google Scholar 

  14. G. Talenti, “Best constant in Sobolev inequality,” Ann. Mat. Pura Appl. Ser.4 110 (1976), 353–372.

    MathSciNet  MATH  Google Scholar 

  15. E. H. Lieb, “Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,” Ann. Math. 118 (1983), no. 2, 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. S. Palais, “The principle of symmetric criticality,” Comm. Math. Phys. 69 (1979), 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. I. Nazarov, The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers” [in Russian], Problemy Mat. Anal. 20 (2000), 171–190; English transl.: J. Math. Sci. 102 (2000), no. 5, 4473–4486.

    MATH  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Problemy Matematicheskogo Analiza, No. 31, 2005, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A.I. Hardy-Sobolev Inequalities in a Cone. J Math Sci 132, 419–427 (2006). https://doi.org/10.1007/s10958-005-0508-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0508-1

Keywords

Navigation