Skip to main content
Log in

3D Negative Electronic Compressibility as a New Emergent Phenomenon

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper was written in honor of Prof. Ted Geballe’s 100th birthday. It concerns a new emergent phenomenon called three-dimensional negative electronic compressibility. The physical content, driving mechanism, and context of the initial discovery of this phenomenon in an iridate material are reviewed. An integrative approach based on multiple experimental methods for carrier concentration modulation and chemical potential shift measurement is proposed for the quest of this phenomenon in other materials. Its implications on the physical properties of materials, in particular terms of electrostatic screening and phase separation, are discussed along with some of its unique prospects for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, P.A., Nagaosa, N., Wen, X.-G.: Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    ADS  Google Scholar 

  2. Tokura, Y.: Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006)

    ADS  Google Scholar 

  3. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    ADS  Google Scholar 

  4. Kimura, T., et al.: Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    ADS  Google Scholar 

  5. Wallace, D.C.: Thermodynamics of Crystals. Wiley, New York (1972)

    Google Scholar 

  6. Baughman, R.H., Stafström, S., Cui, C., Dantas, S.O.: Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998)

    ADS  Google Scholar 

  7. Lee, Y., et al.: Pressure-induced volume expansion of zeolites in the natrolite family. J. Am. Chem. Soc. 124, 5466–5475 (2002)

    Google Scholar 

  8. Lakes, R.S., Lee, T., Bersie, A., Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)

    ADS  Google Scholar 

  9. Jaglinski, T., Kochmann, D., Stone, D., Lakes, R.S.: Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007)

    ADS  Google Scholar 

  10. Liu, Z., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    ADS  Google Scholar 

  11. Fang, N., et al.: Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006)

    ADS  Google Scholar 

  12. Kravchenko, S.V., Rinberg, D.A., Semenchinsky, S.G., Pudalov, V.M.: Evidence for the influence of electron-electron interaction on the chemical potential of the two-dimensional electron gas. Phys. Rev. B 42, 3741 (1990)

    ADS  Google Scholar 

  13. Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992)

    ADS  Google Scholar 

  14. Shapira, S., et al.: Thermodynamics of a charged fermion layer at high \({~}^{r_{s}}\) values. Phys. Rev. Lett. 77, 3181–3184 (1996)

    ADS  Google Scholar 

  15. Dultz, S.C., Jiang, H.W.: Thermodynamic signature of a two-dimensional metal-insulator transition. Phys. Rev. Lett. 84, 4689–4692 (2000)

    ADS  Google Scholar 

  16. Ilani, S., Yacoby, A., Mahalu, D., Shtrikman, H.: Unexpected behavior of the local compressibility near the metal-insulator transition. Phys. Rev. Lett. 84, 3133–3136 (2000)

    ADS  Google Scholar 

  17. Allison, G., et al.: Thermodynamic density of states of two-dimensional GaAs systems near the apparent metal-insulator transition. Phys. Rev. Lett. 96, 216407 (2006)

    ADS  Google Scholar 

  18. Li, L., et al.: Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011)

    ADS  Google Scholar 

  19. Yu, G.L., et al.: Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl. Acad. Sci. 110, 3282–3286 (2013)

    ADS  Google Scholar 

  20. Lee, K., et al.: Chemical potential and quantum hall ferromagnetism in bilayer graphene. Science 345, 58–61 (2014)

    ADS  Google Scholar 

  21. Ilani, S., Donev, L.A.K., Kindermann, M., McEuen, P.L.: Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006)

    ADS  Google Scholar 

  22. Liu, Z., et al.: Anomalous high capacitance in a coaxial single nanowire capacitor. Nature Commun. 3, 879 (2012)

    ADS  Google Scholar 

  23. Kopp, T., Mannhart, J.: Calculation of the capacitances of conductors: perspectives for the optimization of electronic devices. J. App. Phys. 106, 064504 (2009)

    ADS  Google Scholar 

  24. He, J., et al.: Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin-orbit correlated metal. Nature Mater. 14, 577–582 (2015)

    ADS  Google Scholar 

  25. Riley, J.M., et al.: Negative electronic compressibility and tunable spin splitting in WSe2. Nature Nanotech. 10, 1043–1047 (2015)

    ADS  Google Scholar 

  26. Ge, M., et al.: Lattice-driven magnetoresistivity and metal-insulator transition in single-layered iridates. Phys. Rev. B 84(R), 100402 (2011)

    ADS  Google Scholar 

  27. Qi, T.F., et al.: Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1−xRhxO4 (0 ≤ x ≤ 1). Phys. Rev. B 86, 125105 (2012)

    ADS  Google Scholar 

  28. Chen, X., et al.: Influence of electron doping on the ground state of (Sr1−xLax)2IrO4. Phys. Rev. B 92, 075125 (2015)

    ADS  Google Scholar 

  29. de la Torre, A., et al.: Collapse of the Mott gap and emergence of a nodal liquid in lightly doped Sr2IrO4. Phys. Rev. Lett. 115, 176402 (2015)

    ADS  Google Scholar 

  30. Clancy, J.P., et al.: Dilute magnetism and spin-orbital percolation effects in Sr2Ir1−xRhxO4. Phys. Rev. B 89, 054409 (2014)

    ADS  Google Scholar 

  31. Cao, Y., et al.: Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. Nature Commun. 7, 11367 (2016)

    ADS  Google Scholar 

  32. Liu, P., et al.: Electron and hole doping in the relativistic Mott insulator Sr2IrO4: a first-principles study using band unfolding technique. Phys. Rev. B 94, 195145 (2016)

    ADS  Google Scholar 

  33. Hogan, T., et al.: First-order melting of a weak spin-orbit Mott insulator into a correlated metal. Phys. Rev. Lett. 114, 257203 (2015)

    ADS  Google Scholar 

  34. de la Torre, A., et al.: Coherent quasiparticles with a small fermi surface in lightly doped Sr3Ir2O7. Phys. Rev. Lett. 113, 256402 (2014)

    ADS  Google Scholar 

  35. He, J., et al.: Fermi arcs vs. Fermi pockets in electron-doped perovskite iridates. Sci. Rep. 5, 8533 (2015)

    Google Scholar 

  36. Damascelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003)

    ADS  Google Scholar 

  37. He, S., et al.: . Nature Mater. 12, 605–610 (2013)

    ADS  Google Scholar 

  38. Baumberger, F., et al.: Fermi surface and quasiparticle excitations of Sr2RhO4. Phys. Rev. Lett. 96, 246402 (2006)

    ADS  Google Scholar 

  39. Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    ADS  Google Scholar 

  40. Hossain, M.A., et al.: In situ doping control of the surface of high-temperature superconductors. Nature Phys. 4, 527–531 (2008)

    Google Scholar 

  41. Xia, Y., et al.: Systematic control of surface Dirac fermion density on topological insulator Bi2Te3. arXiv:0907.3089

  42. Zhang, Y., et al.: Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotech. 9, 111–115 (2014)

    ADS  Google Scholar 

  43. Wen, C.H.P., et al.: Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nature Commun. 7, 10840 (2016)

    ADS  Google Scholar 

  44. Kim, Y.K., et al.: Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 345, 187–190 (2014)

    ADS  Google Scholar 

  45. Kim, Y.K., Sung, N.H., Denlinger, J.D., Kim, B.J.: Observation of a d-wave gap in electron-doped Sr2IrO4. Nature Phys. 12, 37–41 (2016)

    ADS  Google Scholar 

  46. Hsieh, D., et al.: A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009)

    ADS  Google Scholar 

  47. Chen, Y.L., et al.: Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010)

    ADS  Google Scholar 

  48. Meevasana, W., et al.: Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nature Mater. 10, 114–118 (2011)

    ADS  Google Scholar 

  49. King, P.D.C., et al.: Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. Phys. Rev. Lett. 108, 117602 (2012)

    ADS  Google Scholar 

  50. Fujimori, A., et al.: Core-level photoemission measurements of the chemical potential shift as a probe of correlated electron systems. J. Electron. Spectrosc. Relat. Phenom. 124, 127–138 (2002)

    Google Scholar 

  51. Yagi, H., et al.: Chemical potential shift in lightly doped to optimally doped Ca2���xNaxCuO2Cl2. Phys. Rev. B 73, 172503 (2006)

    ADS  Google Scholar 

  52. Harima, N., et al.: Chemical potential shift in Nd2−xCexCuO4: contrasting behavior between the electron- and hole-doped cuprates. Phys. Rev. B 64(R), 220507 (2001)

    ADS  Google Scholar 

  53. Shen, K.M., et al.: Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett. 93, 267002 (2004)

    ADS  Google Scholar 

  54. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    MATH  Google Scholar 

  55. Renault, O., et al.: Work-function imaging of oriented copper grains by photoemission. Surf. Interface Anal. 38, 375–377 (2006)

    Google Scholar 

  56. Ishii, H., Sugiyama, K., Ito, E., Seki, K.: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999)

    Google Scholar 

  57. Veillette, M., Bazaliy, Y.B., Berlinsky, A.J., Kallin, C.: Stripe formation by long range interactions within SO(5) theory. Phys. Rev. Lett. 83, 2413 (1999)

    ADS  Google Scholar 

  58. Mahan, G.D.: Many-Particle Physics, 3rd edn. Kluwer Academic/Plenum, New York (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. He, T. R. Mion, T. Hogan, H. Hafiz, S. D. Wilson, R. S. Markiewicz, and A. Bansil for their collaborations on 3D NEC research.

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 11874053) and Zhejiang Provincial Natural Science Foundation of China (LZ19A040001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Hua He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wei Wen and Geng Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Zhao, G., Hong, C. et al. 3D Negative Electronic Compressibility as a New Emergent Phenomenon. J Supercond Nov Magn 33, 229–239 (2020). https://doi.org/10.1007/s10948-019-05325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05325-z

Keywords

Navigation