Skip to main content
Log in

Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A high-order time discretization scheme to approximate the time-fractional wave equation with the Caputo fractional derivative of order \(\alpha \in (1, 2)\) is studied. We establish a high-order formula for approximating the Caputo fractional derivative of order \(\alpha \in (1, 2)\). Based on this approximation, we propose a novel numerical method to solve the time-fractional wave equation. Remarkably, this method corrects only one starting step and demonstrates second-order convergence in both homogeneous and inhomogeneous cases, regardless of whether the data is smooth or nonsmooth. We also analyze the stability region associated with the proposed numerical method. Some numerical examples are given to elucidate the convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  2. Carpinteri, A., Cornetti, P., Sapora, A.G.: A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193(1), 193–204 (2011)

    Article  Google Scholar 

  3. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  4. Flajolet, P.: Singularity analysis and asymptotics of Bernoulli sums. Theor. Comput. Sci. 215(1–2), 371–381 (1999)

    Article  MathSciNet  Google Scholar 

  5. Gerolymatou, E., Vardoulakis, I., Hilfer, R.: Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. D 39, 4104–4110 (2006)

    Article  Google Scholar 

  6. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  7. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    Article  MathSciNet  Google Scholar 

  9. Jin, B., Zhou, Z.: Numerical Treatment and Analysis of Time-Fractional Evolution Equations. In: Applied Mathematics Sciences. Springer, Cham (2023)

    Google Scholar 

  10. Lubich, C.: Convolution quadrature and discretized operational calculus. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  11. Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  12. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov–Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80, 957–992 (2019)

    Article  MathSciNet  Google Scholar 

  13. Luo, H., Li, B., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 7, 1164–1184 (2018)

    MathSciNet  Google Scholar 

  14. Luo, H., Li, B., Xie, X.: A space-time finite element method for fractional wave problems. Numer. Algorithms 85, 1095–1121 (2020)

    Article  MathSciNet  Google Scholar 

  15. McLean, W., Thomée, V., Wahlbin, L.B.: Numerical solution of an evolution equation with a positive type memory term. J. Aust. Math. Soc. B 35, 23–70 (1993)

    Article  MathSciNet  Google Scholar 

  16. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    Article  MathSciNet  Google Scholar 

  17. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comp. 78, 1975–1995 (2009)

    Article  MathSciNet  Google Scholar 

  18. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133, 425–430 (1986)

    Article  Google Scholar 

  19. Ramezani, M., Mokhtari, R., Haase, G.: Some high-order formulae for approximating Caputo fractional derivatives. Appl. Numer. Math. 153, 300–318 (2020)

    Article  MathSciNet  Google Scholar 

  20. Shi, J., Chen, M., Yan, Y., Cao, J.: Correction of high-order \(L_{k}\) approximation for subdiffusion. J. Sci. Comput. 93, 31 (2022)

    Article  Google Scholar 

  21. Srivastava, N., Singh, V.K.: L3 approximation of Caputo derivative and its application to time-fractional wave equation-(I). Math. Comput. Simul. 205, 532–557 (2023)

    Article  MathSciNet  Google Scholar 

  22. Wang, Y., Yan, Y., Yang, Y.: Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. Fract. Calc. Appl. Anal. 23(5), 1349–1380 (2020)

    Article  MathSciNet  Google Scholar 

  23. Wang, Y.M., Zheng, Z.Y.: A second-order L2–1\(_{\sigma } \) Crank-Nicolson difference method for two-dimensional time-fractional wave equations with variable coefficients. Comput. Math. Appl. 118, 183–207 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mokhtari.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Mokhtari, R. & Yan, Y. Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave Equation. J Sci Comput 100, 71 (2024). https://doi.org/10.1007/s10915-024-02625-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02625-y

Keywords

Mathematics Subject Classification

Navigation