Skip to main content

Advertisement

Log in

Error Estimates of Energy Stable Numerical Schemes for Allen–Cahn Equations with Nonlocal Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present error estimates for four unconditionally energy stable numerical schemes developed for solving Allen–Cahn equations with nonlocal constraints. The schemes are linear and second order in time and space, designed based on the energy quadratization (EQ) or the scalar auxiliary variable (SAV) method, respectively. In addition to the rigorous error estimates for each scheme, we also show that the linear systems resulting from the energy stable numerical schemes are all uniquely solvable. Then, we present some numerical experiments to show the accuracy of the schemes, their volume-preserving as well as energy dissipation properties in a drop merging simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Cai, Y., Choi, H., Shen, J.: Error estimates for time discretizations of Cahn–Hilliard and Allen–Cahn phase-field models for two-phase incompressible flows. Numerische Mathematik 137(2), 417–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gong, Y., Zhao, J., Wang, Q.: Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation. Adv. Comput. Math. (2018). https://doi.org/10.1007/s10444-018-9597-5

  9. Guan, Z., Lowengrub, J., Wang, C.: Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 40(18), 6836–6863 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, R., Ji, L., Xu, Y.: High order local discontinuous galerkin methods for the Allen–Cahn equation: analysis and simulation. J. Comput. Math. 34(2), 135–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jing, X., Li, J., Zhao, X., Wang, Q.: Second order linear energy stable schemes for Allen–Cahn equations with nonlocal constraints. arXiv preprint arXiv:1810.05311 (2018)

  13. Karali, G., Nagase, Y., RicciardiI, T.: On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. S 7(1), 127–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75(2), 993–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: a c0 finite element approach. J. Comput. Phys. 215(1), 348–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rubinstein, J., Sternberg, P.: Nonlocal reactionłdiffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230(2), 375–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Wang, X., Wise, S .M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 28(1), 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L., Yu, H.: Convergence analysis of an unconditionally energy stable linear Crank–Nicolson scheme for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 51(1), 89–114 (2018)

    MathSciNet  Google Scholar 

  24. Wu, X., Van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014)

    Article  MathSciNet  Google Scholar 

  25. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, X., Forest, M.G., Wang, Q.: Near equilibrium dynamics and one-dimensional spatial–temporal structures of polar active liquid crystals. Chin. Phys. B 23(11), 75–100 (2014)

    Google Scholar 

  28. Yang, X., Zhang, G.: Numerical approximations of the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential using the invariant energy quadratization approach. arXiv preprint arXiv:1712.02760 (2017)

  29. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic q-tensor model of liquid crystals. Comput Methods Appl. Mech. Eng. 318, 803–825 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Qi Wang’s research is partially supported by NSF awards DMS-1517347, DMS-1815921 and OIA-1655740, and NSFC awards #11571032, #91630207 and NSAF-U1530401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Jing, X. & Wang, Q. Error Estimates of Energy Stable Numerical Schemes for Allen–Cahn Equations with Nonlocal Constraints. J Sci Comput 79, 593–623 (2019). https://doi.org/10.1007/s10915-018-0867-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0867-7

Keywords

Navigation