Skip to main content
Log in

Highly Efficient and Accurate Numerical Schemes for the Epitaxial Thin Film Growth Models by Using the SAV Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop in this paper highly efficient, second order and unconditionally energy stable schemes for the epitaxial thin film growth models by using the scalar auxiliary variable (SAV) approach. A main difficulty here is that the nonlinear potential for the model without slope selection is not bounded from below so the SAV approach can not be directly applied. We overcome this difficulty with a suitable splitting of the total free energy density into two parts such that the integral of the part involving the nonlinear potential becomes bounded from below so that the SAV approach can be applied. We then construct a set of linear, second-order and unconditionally energy stable schemes for the reformulated systems. These schemes lead to decoupled linear equations with constant coefficients at each time step so that they can be implemented easily and very efficiently. We present ample numerical results to demonstrate the stability and accuracy of our SAV schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Caflisch, R.E., Gyure, M.F., Merriman, B., Osher, S.J., Ratsch, C., Vvedensky, D.D., Zinck, J.J.: Island dynamics and the level set method for epitaxial growth. Appl. Math. Lett. 12(4), 13–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Wenbin, Wang, Cheng, Wang, Xiaoming, Wise, Steven M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, S., Vvedensky, D.D.: Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Lett. 58(21), 2235 (1987)

    Article  Google Scholar 

  5. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA, 1998, Volume 529 of Materials Research Society Symposia Proceedings, pp. 39–46. MRS, Warrendale, PA (1998)

  7. Gyure, M.F., Ratsch, C., Merriman, B., Caflisch, R.E., Osher, S.T., Zinck, J.J., Vvedensky, D.D.: Level-set methods for the simulation of epitaxial phenomena. Phys. Rev. E 58(6), R6927 (1998)

    Article  MATH  Google Scholar 

  8. Kang, H.C., Weinberg, W.H.: Dynamic Monte Carlo with a proper energy barrier: surface diffusion and two-dimensional domain ordering. J. Chem. Phys. 90(5), 2824–2830 (1989)

    Article  Google Scholar 

  9. Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46(2), 139–282 (1997)

    Article  MathSciNet  Google Scholar 

  10. Li, B., Liu, J.G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14(5), 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61(6), 6190 (2000)

    Article  Google Scholar 

  12. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qiao, Z., Sun, Z.-Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84(292), 653–674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. Submitted to SIAM Rev.

  17. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 352, 407–417 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Villain, J.: Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1), 19–42 (1991)

    Article  Google Scholar 

  19. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, X.: Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC Grants 91630204, 11421110001 and 51661135011, and NSF Grants DMS-1720442 and DMS-1720212.

Funding

Funding was provided by Directorate for Mathematical and Physical Sciences (Grant No. DMS-1620262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Shen, J. & Yang, X. Highly Efficient and Accurate Numerical Schemes for the Epitaxial Thin Film Growth Models by Using the SAV Approach. J Sci Comput 78, 1467–1487 (2019). https://doi.org/10.1007/s10915-018-0832-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0832-5

Keywords

Navigation