Skip to main content
Log in

Solutions for a laminar jet diffusion flame of methyl formate using a skeletal mechanism obtained by applying ANNs

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Numerical simulations involving detailed kinetic combustion reaction mechanisms for long chain fuels are associated with prohibitive computational costs. Thus, there is the need for reduced kinetic mechanisms for the effective numerical simulation of these fuels. The objective of this work is the development of a skeletal mechanism of moderate stiffness for the methyl formate (MF). MF is not indicated as a biodiesel surrogate due to its very short chain, but its study allows to understand its role in the combustion process. Then, based on a detailed mechanism composed of 950 reactions and 176 species, Directed Relation Graph, Depth First Search and a model of Artificial Neural Networks are employed to obtain a skeletal mechanism with 43 reactions and 23 species. The results obtained are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.Y.W. Lai, K.C. Lin, A. Violi, Biodiesel combustion: advances in chemical kinetic modeling. Prog. Energy Combust. Sci. 37(1), 1–14 (2011)

    Article  CAS  Google Scholar 

  2. E.J.K. Nilsson, A.A. Konnov, Flame studies of oxygenates, in Cleaner Combustion: Developing Detailed Chemical Kinetic Models, 1st edn., ed. by F. Battin-Leclerc, J.M. Simmie, E. Blurock (Springer, new York, 2013), pp. 231–311

    Chapter  Google Scholar 

  3. U. Maas, J. Warnatz, Ignition processes in carbon–monoxide–hydrogen–oxygen mixtures. Symp. (Int.) Combust. 22(1), 1695–1704 (1989)

    Article  Google Scholar 

  4. M. Christensen, E.J.K. Nilsson, A.A. Konnov, The temperature dependence of the laminar burning velocities of methyl formate + air flames. Fuel 157, 162–170 (2015)

    Article  CAS  Google Scholar 

  5. S. Dooley, F.L. Dryer, B. Yang, J. Wang, T.A. Cool, T. Kasper, N. Hansen, An experimental and kinetic modeling study of methyl formate low-pressure flames. Combust. Flame 158(4), 732–741 (2011)

    Article  CAS  Google Scholar 

  6. S. Dooley, M.P. Burke, M. Chaos, Y. Stein, F.L. Dryer, V.P. Zhukov, O. Finch, J.M. Simmie, H.J. Curran, Methyl formate oxidation: Speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. Int. J. Chem. Kinet. 42(9), 527–549 (2010)

    Article  CAS  Google Scholar 

  7. W. Ren, K.Y. Lam, S.H. Pyun, A. Farooq, D.F. Davidson, R.K. Hanson, Shock tube/laser absorption studies of the decomposition of methyl formate. Proc. Combust. Inst. 34(1), 453–461 (2013)

    Article  CAS  Google Scholar 

  8. P. Diévart, S.H. Won, J. Gong, S. Dooley, Y. Ju, A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proc. Combust. Inst. 34(1), 821–829 (2013)

    Article  Google Scholar 

  9. E.M. Fisher, W.J. Pitz, H.J. Curran, C.K. Westbrook, Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc. Combust. Inst. 28(2), 1579–1586 (2000)

    Article  CAS  Google Scholar 

  10. H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation. Combust. Flame 129(3), 253–280 (2002)

    Article  CAS  Google Scholar 

  11. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486 (1994)

    Article  CAS  Google Scholar 

  12. T. Lu, C.K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane. Combust. Flame 144(1), 24–36 (2006)

    Article  CAS  Google Scholar 

  13. G.S.L. Andreis, F.A. Vaz, A.L. De Bortoli, Bioethanol combustion based on a reduced kinetic mechanism. J. Math. Chem. 51(6), 1584–1598 (2013)

    Article  CAS  Google Scholar 

  14. N. Peters, Turbulent Combustion, Cambridge Monographs on Mechanics (Cambridge University Press, Cambridge, 2000)

  15. K. Kuo, R. Acharya, Fundamentals of Turbulent and Multi-phase Combustion (Wiley, New York, 2012)

    Book  Google Scholar 

  16. A.G. Tomboulides, J.C.Y. Lee, S.A. Orszag, Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12(2), 139–167 (1997)

    Article  Google Scholar 

  17. M. Hassanaly, H. Koo, F.C. Lietz, S.T. Chang, V. Raman, A minimally-dissipative low-Mach number solver for complex reacting flows in OpenFOAM. Comput. Fluids 162(30), 11–25 (2018)

    Article  CAS  Google Scholar 

  18. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems, 2nd edn. (Springer, Berlin, Heidelberg, 2002)

  19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)

    Google Scholar 

  20. D.S.S. Shieh, Y. Chang, G.R. Carmichael, The evaluation of numerical techniques for solution of stiff ordinary differential equations arising from chemical kinetic problems. Environ. Soft. 3(1), 28–38 (1988)

    Article  Google Scholar 

  21. R.C. Aiken, in Stiff Computation, ed. by R.C. Aiken (Oxford University Press, Oxford, 1985)

    Google Scholar 

  22. T.D. Bui, T.R. Bui, Numerical methods for extremely stiff systems of ordinary differential equations. Appl. Math. Model. 3(5), 355–358 (1979)

    Article  Google Scholar 

  23. Z. Luo, T. Lu, M.J. Maciaszek, S. Som, D.E. Longman, A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy Fuels 24(12), 6283–6293 (2010)

    Article  CAS  Google Scholar 

  24. A.L.D. Bortoli, G.S.L. Andreis, F.N. Pereira, Modeling and Simulation of Reactive Flows, 1st edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

  25. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn. (MIT Press, Cambridge, 2009)

    Google Scholar 

  26. S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29(6), 515–566 (2003)

    Article  CAS  Google Scholar 

  27. B.A. Sen, S. Menon, Turbulent premixed flame modeling using artificial neural networks based chemical kinetics. Proc. Combust. Inst. 32(1), 1605–1611 (2009)

    Article  CAS  Google Scholar 

  28. B. Sen, S. Menon, Representation of chemical kinetics by artificial neural networks for large eddy simulations, in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, no. AIAA 2007-5635, pp. 1–15 (2007)

  29. S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, 2009)

    Google Scholar 

  30. Z. Zhou, Y. Lü, Z. Wang, Y. Xu, J. Zhou, K. Cen, Systematic method of applying ANN for chemical kinetics reduction in turbulent premixed combustion modeling. Chin. Sci. Bull. 58(4), 486–492 (2013)

    Article  CAS  Google Scholar 

  31. F.N. Pereira, A.L. De Bortoli, Solutions for a turbulent jet diffusion flame of ethanol with NOx formation using a reduced kinetic mechanism obtained by applying ANNs. Fuel 231, 373–378 (2018)

    Article  CAS  Google Scholar 

  32. U. Niemann, R. Seiser, K. Seshadri, Ignition and extinction of low molecular weight esters in nonpremixed flows. Combust. Theor. Model. 14(6), 875–891 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is being developed at UFRGS, Federal University of Rio Grande do Sul. Professor De Bortoli gratefully acknowledges the financial support from CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, under Grant 306768/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. De Bortoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha, F.R.R., De Bortoli, A.L. Solutions for a laminar jet diffusion flame of methyl formate using a skeletal mechanism obtained by applying ANNs. J Math Chem 57, 2229–2247 (2019). https://doi.org/10.1007/s10910-019-01068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01068-3

Keywords

Mathematics Subject Classification

Navigation