Skip to main content
Log in

Gaussian solitary waves for the logarithmic-BBM and the logarithmic-TRLW equations

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We investigate the logarithmic-BBM equation (log-BBM) for the determination of Gaussian solitary waves. We extend this work to study the logarithmic-TRLW equation (log-TRLW). The logarithmic nonlinearity for both models will be generalized to obtain generalized Gaussian soliton solutions. Both logarithmic models are characterized by possessing Gaussian solitons. Solitons appear in many chemical applications such as electrically conducting polyenes, polarons, bipolarons, and bolitons in conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.I. Joseph, R. Egri, Another possible model equation for long waves in nonlinear dispersive systems. Phys. Lett. A 61, 429–432 (1977)

    Article  Google Scholar 

  2. A. Jeffrey, Nonlinear wave propagation. Z. Ang. Math. Mech. (ZAMM) 58, T38–T56 (1978)

    Google Scholar 

  3. G. James, D. Pelinovsky, Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials. Proc. R. Soc. A 470, 20130462 (2014)

    Article  Google Scholar 

  4. T. Cazaneve, Stable solutions pf the logarithmic Schrodinger equation. Vonlinear Anal. 7(10), 1110–1127 (1983)

    Google Scholar 

  5. A. Chatterjee, Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912–5919 (1999)

    Article  CAS  Google Scholar 

  6. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, Berlin, 2001)

    Book  Google Scholar 

  7. N.-S. Nguyen, B. Brogliato, Multiple impacts in dissipative granular chains, Lecture Notes in Applied and Computational Mechanics No. 72 (Springer, Berlin, 2014)

  8. Q. Dou, J. Cuevas, J. Eilbeck, F. Russell, Breathers and kinks in a simulated breather experiment. Discrete Contin. Dyn. Syst. Ser. S 4, 1107–1118 (2011)

    Article  Google Scholar 

  9. B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  10. T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. Ser. A 272, 47–78 (1972)

    Article  Google Scholar 

  11. R. Fetecau, D. Levy, Approximate model equations for water waves. Comm. Math. Sci. 3(2), 159–170 (2005)

    Article  Google Scholar 

  12. E. Afshari, Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid-State Circuits 40, 744–752 (2005)

    Article  Google Scholar 

  13. K. Ahnert, A. Pikovsky, Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79, 026209 (2009)

    Article  Google Scholar 

  14. S. Kumar, Le Wei, X. Zhang, Numerical study based on an implicit fully discreate local discontinuous Galerkin method for time fractional coupled Schrodinger system. Comput. Math. Appl. 64(8), 2603–2615 (2012)

    Article  Google Scholar 

  15. P. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations, vol. 1756 (Lecture Notes in Mathematics, Springer, Berlin, 2001)

    Google Scholar 

  16. G. Jamesa, P.G. Kevrekidis, J. Cuevas, Breathers in oscillator chains with Hertzian interactions. Phys. D 251, 39–59 (2013)

    Article  Google Scholar 

  17. H. Leblond, D. Mihalache, Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  Google Scholar 

  18. H. Leblond, D. Mihalache, Few-optical-cycle solitons: modified Korteweg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  19. M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)

    Article  Google Scholar 

  20. R. Hirota, Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Article  Google Scholar 

  21. W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  Google Scholar 

  22. A. Biswas, Dynamics of Gaussian and super-Gaussian solitons in birefringent optical fibers. PIER 33, 119–139 (2001)

    Article  Google Scholar 

  23. A. Biswas, Gaussian solitons in birefringent optical fibers. Int. J. Pure Appl. Math. 2(1), 83–100 (2002)

    Google Scholar 

  24. A.M. Wazwaz, A coupled Ramani equation: multiple soliton solutions. J. Math. Chem. 52, 2133–2140 (2014)

    Article  CAS  Google Scholar 

  25. L.M. Tolbert, Solitons in a box: the organic chemistry of electrically conducting polyenes. Research article solitons in a box: the organic chemistry of electrically conducting polyenes. Acc. Chem. Res. 25(12), 561–568 (1992)

    Article  CAS  Google Scholar 

  26. J.L. Bredas, G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985)

    Article  CAS  Google Scholar 

  27. C. Kuhn, Solitons, polarons, and excitons in polyacetylene: step-potential model for electron-phonon coupling in \(\pi \)-electron systems. Phys. Rev. B 40(11), 7776 (1989)

  28. J. Bednar, Solitons in radiation chemistry and biology. J. Radioanal. Nucl. Chem. 133(2), 185–197 (1989)

    Article  CAS  Google Scholar 

  29. L. Bernasconi, Chaotic soliton dynamics in photoexcited trans-polyacetylene. J. Phys. Chem. Lett. 6, 908–912 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. Gaussian solitary waves for the logarithmic-BBM and the logarithmic-TRLW equations. J Math Chem 54, 252–268 (2016). https://doi.org/10.1007/s10910-015-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0559-6

Keywords

Mathematics Subject Classification

Navigation