Skip to main content
Log in

Asymptotic Properties of a Stochastic SIR Epidemic Model with Beddington–DeAngelis Incidence Rate

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, the stochastic SIR epidemic model with Beddington–DeAngelis incidence rate is investigated. We classify the model by introducing a threshold value \(\lambda \). To be more specific, we show that if \(\lambda <0\) then the disease-free is globally asymptotic stable i.e., the disease will eventually disappear while the epidemic is persistence provided that \(\lambda >0\). In this case, we derive that the model under consideration has a unique invariant probability measure. We also depict the support of invariant probability measure and prove the convergence in total variation norm of transition probabilities to the invariant measure. Some of numerical examples are given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  3. Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in A stochastic SIR model. SIAM J. Appl. Dyn. Syst

  4. Du, N.H., Nguyen, D.H., Yin, G.: Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 53(1), 187–202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrsch. Verw. Gebiete 30, 235–254 (1974). Corrections in 39(1977) 81-84

    Article  MathSciNet  MATH  Google Scholar 

  8. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  9. Kaddar, A.: Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal. Model. Control 15(3), 299–306 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics (part I). Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  11. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics (part II). Proc. R. Soc. Ser. A 138, 55–83 (1932)

    Article  MATH  Google Scholar 

  12. Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15(2), 690–707 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kortchemski, I.: A predator-prey SIR type dynamics on large complete graphs with three phase transitions. Stoch. Process. Appl. 125(3), 886–917 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lahrouz, A., Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16(1), 59–76 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Jiang, D.: Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dyn. Differ. Equ. 26(4), 1079–1094 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mao, X.: Stochastic Differential Equations and Their Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  17. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schurz, H., Tosun, K.: Stochastic asymptotic stability of SIR model with variable diffusion rates. J. Dyn. Differ. Equ. 27(1), 69–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stettner, L.: On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes, LCDS Report No. 86-16. Brown University, Providence (1986)

    Book  Google Scholar 

  20. Tornatore, E., Buccellato, S.M., Vetro, P.: Stability of a stochastic SIR system. Phys. A 354, 111–126 (2005)

    Article  Google Scholar 

  21. Wang, W., Zhao, X.Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Author would like to thank Vietnam Institute for Advance Study in Mathematics (VIASM) for supporting and providing a fruitful research environment and hospitality. This research was supported by Foundation for Science and Technology Development of Vietnam’s Ministry of Education and Training No. B2015-27-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Dieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieu, N.T. Asymptotic Properties of a Stochastic SIR Epidemic Model with Beddington–DeAngelis Incidence Rate. J Dyn Diff Equat 30, 93–106 (2018). https://doi.org/10.1007/s10884-016-9532-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9532-8

Keywords

Mathematics Subject Classification

Navigation