Skip to main content
Log in

Optimal Control Problem for Cahn–Hilliard Equations with State Constraint

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with the state-constrained optimal control problem governed by Cahn–Hilliard equations. After showing the relationship between the control problem and its approximation, we derive the optimality conditions for an optimal control of our original problem by using the one of the approximate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai F., Elliott C.M., Gardiner A., Spence A., Stuart A.M. The viscous Cahn–Hilliard equation. Part I. Computations. Nonlinearity 1995;8:131–160.

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbu V. Local controllability of the phase field system. Nonlinear Anal. TMA. 2002;50:363–372.

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbu V. Optimal control of variational inequalities. In: Pitman research notes in mathematics, London, Boston.

  4. Cahn J. W., Hilliard J. E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958;2:258–267.

    Article  Google Scholar 

  5. Chen Z. Optimal boundary controls for a phase field model. IMA J. Math. Control and Information 1993;10:157–176.

    Article  MATH  MathSciNet  Google Scholar 

  6. Colli P., Gilardi G., Podio-Guidugli P., Sprekels J. Distributed optimal control problem of a nonstandard system of phase field equations. Contin. Mech. Thermodyn. 2012;24:437–459.

    Article  MATH  MathSciNet  Google Scholar 

  7. Elliott C.M., Kostin I.N. Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn–Hilliard equation. Nonlinearity 1996;9:687–702.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hinterm̈ller M., Wegner D. Distributed optimal control of the Chan–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 2012;50:388–418.

    Article  MathSciNet  Google Scholar 

  9. Ito A., Kenmochi N., Niezgdka M. Phase separation model of Penrose–Fife type with Signorini boundary condition. Adv. Math. Sci. Appl. 2007;17:337–356.

    MATH  MathSciNet  Google Scholar 

  10. Kenmochi N., Niezgódka M., Pawlow I. Subdifferential operator approach to the Cahn–Hilliard equation with constraint. J. Diff. Eqns. 1995;117:320–356.

    Article  MATH  Google Scholar 

  11. Kubo M. The Cahn–Hilliard equation with time-dependent constraint. Nonlinear Anal. TMA. 2012;75:5672–5685.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lefter C., Sprekels J. Optimal boundary control of a phase field system modeling non-isothermal phase transitions. Adv. Math. Sci. Appl. 2007;17:181–194.

    MATH  MathSciNet  Google Scholar 

  13. Li X., Yong J. Optimal control theory for infinite dimensional system. Boston: Birhauser; 1995.

    Book  Google Scholar 

  14. Lions J.L. Optimal control of systems governed by partial differential equations. Berlin: Springer; 1971.

    Book  MATH  Google Scholar 

  15. Miranville A. Generalized Cahn–Hilliard equations based on a microforce balance. J. Appl. Math. 2003;4:165–185.

    Article  MathSciNet  Google Scholar 

  16. Moroşanu C., Wang G. State-constrained optimal control for the phase-field transition system. Numerical Numer. Funct. Anal. Optim. 2007;28:379–403.

    Article  MATH  Google Scholar 

  17. Novick-Cohen A. The Cahn–Hilliard equation. In: Handbook of differential equations, Evolutionary Partial Differential Equations. Amsterdam: Elsevier, p. 2008.

  18. Park J., Jeong J., Kang Y., Optimal control of parabolic variational inequalities with delays and state constraint. Nonlinear Anal. 2009;71:329–339.

    Article  MathSciNet  Google Scholar 

  19. Ryu S.-U., Yagi A. Optimal control for an adsorbate-induced phase transition model. Appl. Math. Comput. 2005;171:420–432.

    Article  MATH  MathSciNet  Google Scholar 

  20. Temam R. Infinite-dimensional dynamical systems in mechanics and physics, second ed. In: Applied mathematical sciences. New York: Springer, p. 1997.

  21. Wang G. Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 2002;41:583–606.

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang Q., Nakagiri S. Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems. Res. Inst. Math. Sci. Kokyuüroku 2000;1128:172–180.

    MATH  MathSciNet  Google Scholar 

  23. Yong J., Zheng S. Feedback stabilization and optimal control for the Cahn–Hilliard equation. Nonlinear Anal. TMA. 1991;17:431–444.

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhao X., Liu C. Optimal control problem for viscous Cahn–Hilliard equation. Nonlinear Anal. TMA. 2011;74:6348–6357.

    Article  MATH  Google Scholar 

  25. Zhao X., Liu C. 2011. Optimal control of the convective Cahn–Hilliard equation, Applicable Analysis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Wang, Y. Optimal Control Problem for Cahn–Hilliard Equations with State Constraint. J Dyn Control Syst 21, 257–272 (2015). https://doi.org/10.1007/s10883-014-9259-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9259-y

Keywords

Mathematical Suject Classification (2010)

Navigation