Skip to main content
Log in

Stability and Postcritical Behavior of Cylindrical Composite Shells with Local Imperfections Under External Pressure

  • Published:
International Applied Mechanics Aims and scope

An approach to solving the problem of the nonlinear deformation of orthotropic cylindrical shells is proposed. On the surface of the shell, there is a local deflection bounded by segments of the coordinate lines. The Timoshenko–Mindlin shell theory, the Byskov–Hatchinson asymptotic method, and the continuous continuation method for solving nonlinear algebraic equations are used. To determine the critical loads and deformation paths, it is necessary to estimate the number of interacting modes sufficient to achieve satisfactory accuracy. Examples of analyzing composite shells with an initial local deflection of positive or negative amplitude are given

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bazhenov, M. P. Semenyuk, and V. M. Trach, Nonlinear Deformation, Stability, and Postcritical Behavior of Anisotropic Shells [in Ukrainian], Karavela, Kyiv (2010).

    Google Scholar 

  2. G. A. Vanin and N. P. Semenyuk, Stability of Shells Made of Composites with Imperfections [in Russian], Naukova Dumka, Kyiv (1987).

    Google Scholar 

  3. G. D. Gavrilenko and L. P. Krasovskii, “Stability of circular cylindrical shells with a single local dent,” Strength of Materials, 36, No. 3, 260–268 (2004).

    Article  Google Scholar 

  4. E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: Parameter Continuation Method in Nonlinear Problems of Solid Mechanics [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  5. D. F. Davydenko, “A new method for numerical solution of systems of nonlinear equations,” Dokl. AN SSSR, 88, No. 4, 601–602 (1953).

    MathSciNet  Google Scholar 

  6. A. S. Sakharov (ed.), V. N. Kislookii, V. V. Kirichevskii, J. Altenbach (ed.), U. Gabbert, J. Dankert, H. Kцppler, and S. Koczyk, The Finite-Element Method in Solid Mechanics [in Russian], Vyshcha Shkola, Kyiv; Die Methode der finiten Elemente in der Festkцrpermechanik [in German], VEB Fachbuchverlag, Leipzig (1982).

  7. N. P. Semenyuk and N. B. Zhukova, “Stability, postbuckling behavior, and optimization of shells made of composite materials,” Mech. Comp. Mater., 27, No. 1, 107–111 (1991).

    Article  Google Scholar 

  8. N. P. Semenyuk and N. B. Zhukova, “Effect of the interaction of buckling modes on the optimum design of laminated cylindrical shells made of composites,” Mech. Comp. Mater., 29, No. 3, 268–272 (1993).

    Article  Google Scholar 

  9. J. C. Amazigo and W. B. Fraser, “Buckling under external pressure of cylindrical shells with dimple shaped initial imperfections,” Int. J. Solids Struct., 7, No. 8, 883–900 (1971).

    Article  MATH  Google Scholar 

  10. B. Budiansky, “Theory of buckling and post-bucking behavior of elastic structures,” Adv. Appl. Mech., 14, 2–65 (1974).

    Google Scholar 

  11. E. Byskov, “Mode interaction in structures—An overview,” in: Proc. CD-ROM 6th World Congr. of Computational Mechanics, Tsinghua University, China (September) (2004).

  12. E. Byskov and J. W. Hutchinson, “Mode interaction in axially stiffened cylindrical shells,” AIAA J., 16, No. 7, 941–948 (1977).

    Article  ADS  Google Scholar 

  13. I. Elishakoff, “Probabilistic resolution of the twenties century conundrum in elastic stability,” Thin-Walled Struct., 59, 35–57 (2012).

    Article  Google Scholar 

  14. E. A. Gotsulyak, D. E. Prusov, and N. E. Aranchii, “Stability of geîmetrically imperfect general-view shells,” Int. Appl. Mech., 36, No. 11, 1476–1481 (2000).

    Article  ADS  MATH  Google Scholar 

  15. W. T. Koiter, General Theory of Mode Interaction in Stiffened Plate and Shell Structures, Report WTHD 91, Delft University of Technology, Holland (1976).

  16. Z. Kolakowski, “On certain aspects of global and local buckling modes in thin-walled column-beams,” J. Theor. Appl. Mech., 32, No. 2, 409–427 (1994).

    Google Scholar 

  17. N. P. Semenyuk, “Nonlinear deformation of shells with finite angles of rotation and low elastoplastic strains,” Int. Appl. Mech., 51, No. 2, 149–158 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N. P. Semenyuk and N. B. Zhukova, “Two methods for calculating the stability of shells with single-mode and multimode imperfections,” Int. Appl. Mech., 32, No. 1, 20–24 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N. P. Semenyuk, V. M. Trach, and N. B. Zhukova, “The theory of stability of cylindrical composite shells revisited,” Int. Appl. Mech., 51, No. 4, 449–460 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Semenyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 52, No. 6, pp. 79–92, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenyuk, N.P., Trach, V.M. Stability and Postcritical Behavior of Cylindrical Composite Shells with Local Imperfections Under External Pressure. Int Appl Mech 52, 624–634 (2016). https://doi.org/10.1007/s10778-016-0783-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-016-0783-1

Keywords

Navigation