Skip to main content
Log in

Symmetric Cyclic Controlled Quantum Teleportation of Three-Qubit State by a nineteen-Qubit Entangled State

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Current protocols face limitations due to the small number and single form of transmitted qubits, as well as the complexity involved in preparing quantum channels. To address these limitations and develop a novel and practical protocol, we propose a new symmetric cyclic controlled quantum teleportation protocol, using nineteen-qubit entangled state as the quantum channel. Specifically, Alice, Bob and Charlie cyclically send arbitrary three-qubit states among themselves with the help of the controller David. The specialty of the proposed protocol is the utilization of multiple easy-to-prepare Bell-states and single-qubits within the quantum channel, which effectively minimizes resource consumption. Furthermore, we generalize the protocol with n+1(n≥3) parties by using (6n+1)-qubit entangled state as the quantum channel. This paper briefly analyzes the security of the protocol and compares them with the previous protocols in terms of efficiency. The results show that the present protocol is secure and more efficient. Our scheme has the potential to play a crucial role in facilitating secure quantum communication between quantum nodes in quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data generated or analyzed during this study are included in the article.

References

  1. Xiang, B.W., Zong, W.Y., Xiao, L.H.: Twin-field quantum key distribution with large misalignment error [J]. Phys. Rev. A. 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  2. Banerjee, A., Pathak, A.: Maximally efficient protocol s for direct secure quantum communication. Physics Letters A 376(45), 2944–2950 (2012). Elsevier B.V.

    Article  ADS  CAS  Google Scholar 

  3. Liu, C.-J., Li, Z.-H., Bai, C.-M., Si, M.-M.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal seven-qudit entangled states. Int. J. Theor. Phys. 57(2), 428–442 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster State. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  6. Huang, Sang M.: Bidirectional quantum teleportation by using five-qubit cluster State[J]. Int. J. Theor. Phys. 55(3), 1333–1335 (2016)

    Article  MathSciNet  Google Scholar 

  7. Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Zhou, R.G., Li, X., Qian, C., Ian, H.: Quantum bidirectional teleportation 2↔ 2 or 2↔ 3 qubit teleportation protocol via 6-qubit entangled state. Int. J. Theor. Phys. 59(1), 166–172 (2020)

    Article  MathSciNet  Google Scholar 

  9. Huo, G., Zhang, T., Zha, X., Zhang, X., Zhang, M.: Controlled asymmetric bidirectional quantum tel eportation of two - and three - qubit states. Quantum Inf. Process. 20(1), 1–11 (2021)

    Article  Google Scholar 

  10. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)

    Article  MathSciNet  Google Scholar 

  11. Jiang, Y.L., Zhou, R.G., Hao, D.Y., Hu, W.: Bidirectional controlled quantum teleportation of three-qubit state by a new entangled eleven-qubit state. Int. J. Theor. Phys. 60(9), 3618–3630 (2021)

    Article  MathSciNet  Google Scholar 

  12. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 qubit teleportation protocol between Alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    Article  MathSciNet  Google Scholar 

  13. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18, 353 (2019). https://doi.org/10.1007/s11128-019-2456-6

    Article  ADS  MathSciNet  Google Scholar 

  14. Yuan, H., Pan, G.: Zhu: improving the bidirectional quantum teleportation protocol via five-qubit cluster state. Int. J. Theor. Phys. 59, 3387–3395 (2020). https://doi.org/10.1007/s10773-020-04595-x

    Article  Google Scholar 

  15. Kazemikhah, P., Aghababa, H.: Bidirectional quantum teleportation of an arbitrary number of qubits by using four qubit cluster state. Int. J. Theor. Phys. 60(1), 378–386 (2021)

    Article  MathSciNet  Google Scholar 

  16. Ahmadkhaniha, Armin, et al.: Enhancing quantum teleportation: an enable-based protocol exploiting distributed quantum gates. Opt. Quant. Electron. 55(12), 1079 (2023). https://doi.org/10.1007/s11082-023-05351-1

    Article  Google Scholar 

  17. Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum. Inf. Process. 16, 201 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Li, Yh., Qiao, Y., Sang, Mh., et al.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019)

    Article  Google Scholar 

  19. Choudhury, B. S., Samanta, S.: A controlled protocol for asymmetric cyclic (A B C A) quantum state transfer between three parties. Physica Scripta, 95(1) (2019). https://doi.org/10.1088/1402-4896/ab3d43.

  20. Yang, B.: Asymmetric cyclic controlled quantum teleportation by using a quantum channel composed of six G states. Modern Physics Lett B, (2022). https://doi.org/10.1142/S0217984922501135

  21. Verma, V., Yadav, D., Mishra, D.K.: Improvement on cyclic controlled teleportation by using a sevenQubit entangled state. Opt. Quantum Electron. 53, 1–11 (2021)

    Article  Google Scholar 

  22. Verma, V.: Cyclic quantum teleportation via G-states. Mod. Phys. Lett. B 35, 2150145 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Cao, Z., Qi, J., Zhang, Y.: Bidirectional quantum transmission with different levels of control. Int. J. Theor. Phys. 61, 1–5 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rahmawati, R., Purwanto, A., Subagyo, B.A., et al.: Symmetric and asymmetric cyclic quantum teleportation with different controller for each participant. Int. J. Theor. Phys. 61(10), 1–14 (2022). https://doi.org/10.1007/s10773-022-05208-5

    Article  MathSciNet  Google Scholar 

  25. Verma, V.: Symmetric and asymmetric cyclic controlled quantum teleportation via nine-qubit entangled state. Mod. Phys. Lett. B 35, 2150249 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Parakh, Abhishek: Quantum Teleportation with One Classical Bit. Sci. Rep. 12(1), 3392 (2022). https://doi.org/10.1038/s41598-022-06853-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taufiqi, Muhammad, et al.: Dual Input Quantum Teleportation. Int. J. Theor. Phys. 62(2), 20 (2023). https://doi.org/10.1007/s10773-023-05278-z

    Article  MathSciNet  Google Scholar 

  28. Mahjoory, Ali, et al.: Asymmetric Tridirectional Quantum Teleportation Using Seven-Qubit Cluster States. Physica Scripta 98(8), 085218 (2023). https://doi.org/10.1088/1402-4896/ace38b

    Article  ADS  Google Scholar 

  29. Mafi, Yousef, et al.: Efficient controlled quantum broadcast protocol using 6n-qubit cluster state in Noisy channels. Opt. Quant. Electron. 55(7), 653 (2023). https://doi.org/10.1007/s11082-023-04928-0

    Article  Google Scholar 

  30. Yang, Benchao: Bidirectional hierarchical quantum teleportation based on an eight-qubit entangled state. Laser Physics Lett 20(9), 095201 (2023). https://doi.org/10.1088/1612-202X/ace3be

    Article  ADS  Google Scholar 

  31. Zhang, Zhihua, Sang, Yuyang: Bidirectional Quantum Teleportation in Multi-Hop Communication Network. Quantum Inf. Process 22(5), 201 (2023). https://doi.org/10.1007/s11128-023-03950-1

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, Y., Hua, Nie, Ping, L.: Bidirectional Controlled Teleportation by Using a Five-Qubit Composite GHZBell State. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  Google Scholar 

  33. Zhou, R.G., Qian, C., Xu, R.: A novel protocol for bidirectional controlled quantum teleportation of twoqubit states via seven-qubit entangled state in noisy environment. Int. J. Theor. Phys. 59(1), 134–148 (2020)

    Article  Google Scholar 

  34. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58, 3594–3601 (2019)

    Article  MathSciNet  CAS  Google Scholar 

  35. Jiang, S.X., Zhou, R.G., Xu, R., Luo, G.: Cyclic hybrid Double-Channel quantum communication via bellstate and GHZ-state in Noisy environments. IEEE Access. 7, 80530–80541 (2019)

    Article  Google Scholar 

  36. Chou, Y.-H., Lin, Y.-T., Zeng, G.-J., Lin, F.-J., Chen, C.-Y.: Controlled bidirectional quantum secure direct communication. Sci. World J. 2014, 694798 (2014)

    Article  Google Scholar 

  37. Mafi, Yousef, et al.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2n Bell States as quantum channel. Opt. Quant. Electron. 54(9), 568 (2022). https://doi.org/10.1007/s11082-022-03951-x

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 62172268 and 62302289; and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 23YF1416200.

Author information

Authors and Affiliations

Authors

Contributions

De-Yu Huang, Ri-Gui Zhou and Rui-Qing Xu conceived the theory and designed the protocol.

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 COn the base of that Alice’s and Bob’s Bell-state measurement results are \({\left|{\Phi }^{+}\right.\rangle }_{{\mathrm{\alpha }}_{1}{\mathrm{A}}_{1}}\), \({\left|{\Phi }^{+}\right.\rangle }_{{\mathrm{\alpha }}_{2}{\mathrm{A}}_{2}}\), \({\left|{\Phi }^{+}\right.\rangle }_{{\mathrm{\alpha }}_{3}{\mathrm{A}}_{3}}\), \({\left|{\Phi }^{+}\right.\rangle }_{{\upbeta }_{1}{\mathrm{B}}_{1}}\), \({\left|{\Phi }^{+}\right.\rangle }_{{\upbeta }_{2}{\mathrm{B}}_{2}}\) and \({\left|{\Phi }^{+}\right.\rangle }_{{\upbeta }_{3}{\mathrm{B}}_{3}}\) of Step 1 and 2 in Section 2.2. The specific unitary transformation employed to transmit collapsed states of qubits \(\{{\mathrm{B}}_{4},{\mathrm{B}}_{5},{\mathrm{B}}_{6},{\mathrm{C}}_{4},{\mathrm{C}}_{5},{\mathrm{C}}_{6},{\mathrm{A}}_{4},{\mathrm{A}}_{5},{\mathrm{A}}_{6},\mathrm{D}\}\) into the desired state shown in Eq. (13) correspond to Charlie’s Bell-state measurement results, and David’s single-qubit measurement results

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, DY., Zhou, RG. & Xu, RQ. Symmetric Cyclic Controlled Quantum Teleportation of Three-Qubit State by a nineteen-Qubit Entangled State. Int J Theor Phys 63, 1 (2024). https://doi.org/10.1007/s10773-023-05522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05522-6

Keywords

Navigation