Skip to main content
Log in

Comment on “Controlled Bidirectional Quantum Secure Direct Communication with Six-Qubit Entangled States”

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the controlled bidirectional quantum secure direct communication, two users can successfully exchange their private messages only when a third party permits. Recently, a controlled bidirectional quantum secure direct communication protocol with six-qubit entangled states was proposed (Int. J. Theor. Phys. 60(8), 2943–2950 2021). It claimed that, in the protocol, the participant Bob can decode Alice’s private message only with Charlie’s agreement. However, in this comment, it is pointed out that Bob can decode Alice’s private message without needing Charlie’s agreement by constructing an intercept-and-resend attack. Furthermore, to resist the constructed attack, an improving strategy is suggested. The comment can help designers of such protocols avoid similar mistakes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author (E-mail: xf.zou@hotmail.com).

References

  1. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  2. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  3. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68 (4), 042317 (2003)

    Article  ADS  Google Scholar 

  4. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  5. Long, G.-L., Deng, F.-G., Wang, C., Li, X. -H., Wen, K., Wang, W. -Y.: Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  6. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Science & Applications 5(9), 16144 (2016)

    Article  Google Scholar 

  7. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  8. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  9. Qi, R., Zhen, S., Lin, Z., Niu, P., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light: Science & Applications 8(1), 22 (2019)

    Article  ADS  Google Scholar 

  10. Pan, D., Lin, Z., Wu, J., Sun, Z., Ruan, D., Yin, L., Long, G.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Research 8(9), 1522–1531 (2020)

    Article  Google Scholar 

  11. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gao, T., Yan, F.-L., Wang, Z.-X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893 (2005)

    Article  Google Scholar 

  13. Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)

    Article  ADS  Google Scholar 

  14. Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)

    Article  Google Scholar 

  15. Yu, Z.-B., Gong, L.-H., Wen, R.-H.: Novel multiparty controlled bidirectional quantum secure direct communication based on continuous-variable states. Int. J. Theor. Phys. 55(3), 1447–1459 (2016)

    Article  MATH  Google Scholar 

  16. Kao, S. -H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process 15(10), 4313–4324 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process 16(5), 139 (2017)

    Article  ADS  MATH  Google Scholar 

  18. Pan, H.-M.: Quantum dialogue based on entanglement swapping and hadamard operation via cavity QED. Int. J. Theor. Phys. 58(3), 1017–1027 (2019)

    Article  MATH  Google Scholar 

  19. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China, Ser. G 51(5), 559–566 (2008)

    Article  Google Scholar 

  20. Tan, Y.-G., Cai, Q.-Y.: Classical correlation in quantum dialogue. International Journal of Quantum Information 6(02), 325–329 (2008)

    Article  Google Scholar 

  21. Shi, G.-F., Tian, X.-L.: Quantum secure dialogue based on single photons and controlled-not operations. J. Mod. Opt. 57(20), 2027–2030 (2010)

    Article  ADS  Google Scholar 

  22. Shi, G.-F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Optics Communications 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  23. Ye, T.-Y.: Large payload bidirectional quantum secure direct communication without information leakage. International Journal of Quantum Information 11 (05), 1350051 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Liu, Z.-H., Chen, H.-W.: Comment on “improvement of controlled bidirectional quantum direct communication using a GHZ state”. Chin. Phys. Lett. 30 (7), 079901 (2013)

    Article  ADS  Google Scholar 

  26. Chang, C.-H., Luo, Y.-P., Yang, C.-W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process 16(6), 1–11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ye, T.Y: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89(1), 015103 (2014)

    Article  ADS  Google Scholar 

  30. Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Science China Physics Mechanics & Astronomy 57(12), 2266–2275 (2014)

    Article  ADS  Google Scholar 

  31. Ye, T.-Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process 14(9), 3499–3514 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ye, T.-Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process 14(4), 1469–1486 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Science China Physics Mechanics & Astronomy 58(4), 1–10 (2015)

    Article  MathSciNet  Google Scholar 

  34. Ye, T.-Y., Li, H.-K., Hu, J.-L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process 20(6), 1–13 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ye, T.-Y., Ye, C.-Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pan, H.-M.: Semi-quantum dialogue with Bell entangled states. Int. J. Theor. Phys. 59(5), 1364–1371 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pan, H.-M.: Controlled bidirectional quantum secure direct communication with six-qubit entangled states. Int. J. Theor. Phys. 60(8), 2943–2950 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China (Nos. 61871205 and 11874312), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012623), the Innovation Project of Department of Education of Guangdong Province of China (No. 2017KTSCX180), the Science and Technology Project of Jiangmen City of China (No. 2021030101270004596), and the Joint Research and Development Fund of Wuyi University, Hong Kong and Macao (No. 2021WGALH16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfu Zou or Xin Wang.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Wang, X., Rong, Z. et al. Comment on “Controlled Bidirectional Quantum Secure Direct Communication with Six-Qubit Entangled States”. Int J Theor Phys 62, 43 (2023). https://doi.org/10.1007/s10773-022-05273-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05273-w

Keywords

Navigation