Skip to main content
Log in

Semi-Quantum Key Distribution Protocol with Logical Qubits over the Collective-Rotation Noise Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a semi-quantum key distribution (SQKD) protocol based on logical qubits which is able to resist the collective-rotation noise is put forward. This protocol only uses three types of two-physical-qubit entangled states and requires the quantum communicant just to perform the single-physical-qubit measurement. Compared with the previous SQKD protocol workable over the collective-rotation noise channel, this protocol has better performances on the aspects of initial quantum resource, number of initial quantum states, quantum measurement of quantum communicant and qubit efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

  3. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

  4. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  6. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. 'Inter. J. Theor. Phys. 59(9), 2807–2815 (2020)

  8. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

  9. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  Google Scholar 

  10. Pan, H.M.: Semi-quantum dialogue with bell entangled states. Int. J. Theor. Phys. 59, 1364–1371 (2020)

    Article  MathSciNet  Google Scholar 

  11. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  12. Ye, C.Q., Ye, T.Y.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661–671 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

  14. Ye, C.Q., Ye, T.Y., He, D., Gan, Z.G.: Multiparty semi-quantum secret sharing with d-level single particle states. Inter. J. Theor. Phys. 58(11), 3797–3814 (2019)

  15. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)

  16. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Inter. J. Theor. Phys. 57(12), 3819–3834 (2018)

  17. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19, 180 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhou, N.R., Xu, Q.D., Du, N.S., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20, 124 (2021)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum private query protocol without invoking the measurement capability of classical user. Int. J. Theor. Phys. 59(7), 2044–2051 (2020)

    Article  MathSciNet  Google Scholar 

  21. Zhang, C., Huang, Q., Long, Y.X., Sun, Z.W.: Secure three-party semi-quantum summation using single photons. Int. J. Theor. Phys. 60, 3478–3487 (2021)

    Article  Google Scholar 

  22. Zhang, M.H., Li, H.F., Peng, J.Y., Fen, X.Y.: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56, 2659–2670 (2017)

    Article  Google Scholar 

  23. Tsai, C.L., Hwang, T.: Semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 57, 3410–3418 (2018)

    Article  Google Scholar 

  24. Tsai, C.L., Yang, C.W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58, 2244–2250 (2019)

    Article  Google Scholar 

  25. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  26. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A. 361, 233–238 (2006)

    Article  ADS  Google Scholar 

  27. Yang, C.W., TSAI, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  28. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Ser. G-Phys. Mech. 54(5), 942–947 (2011)

  29. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of Two-Way Quantum Communication Protocols against Trojan Horse Attack. (2005). http://arxiv.org/pdf/quant-ph/0508168.pdf. Accessed 23 Aug 2005

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  31. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  32. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Inter. J. Mod. Phy. C 20(10), 1531–1535 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Pan.

Ethics declarations

Conflicts of interest

No conflicts of interest are involved.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X. Semi-Quantum Key Distribution Protocol with Logical Qubits over the Collective-Rotation Noise Channel. Int J Theor Phys 61, 77 (2022). https://doi.org/10.1007/s10773-022-05076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05076-z

Keywords

Navigation